
01MAR02 GOO 1

Simple Dynamic Simple Dynamic
Compilation with GOOCompilation with GOO

Jonathan Bachrach
MIT AI Lab

01MAR02 GOO 2

GOO TalkGOO Talk

• Preliminary work
• Introduce challenge
• Present GOO

– Introduce language
– Sketch implementation
– Report status

• Request Quick C– features

01MAR02 GOO 3

Scripting Languages Can Be:Scripting Languages Can Be:
Fast, Clean, Safe, Powerful, Fast, Clean, Safe, Powerful,

and of course Funand of course Fun
• Don’t have to trade off fun for speed etc.
• Don’t need complicated implementation

• Requires forced rethinking and reevaluation of
– Technologies - faster, bigger, cheaper
– Architecture - dynamic compilation
– Assumptions - …

01MAR02 GOO 4

GOOGOO
Art / Science / EducationArt / Science / Education

• Research/Teaching vehicle
– For rethinking language design and

implementation
• Reaction to a Reaction …
• Targetted for high-performance/interactive

software development for
– Embedded systems
– Electronic music

01MAR02 GOO 5

GOO PowerGOO Power

Features
• Pure object-oriented
• Multimethods

– Slot accessors as well

• Dynamic types
– Ext. param types

• Modules
• Macros
• Restartable exceptions

Builds on
• Proto
• Dylan
• Cecil
• CLOS
• Scheme
• Smalltalk

01MAR02 GOO 6

GOO SimplicityGOO Simplicity

• PLDI Core Wars
– 10K Lines Implementation *
– 10 Page Manual **
– Hard Limit – “pressure makes pearls”

• Interpreter Semantics
• Speed through “partial evaluation”
• Implementation Serendipity

01MAR02 GOO 7

Complexity is DangerousComplexity is Dangerous
to Your Healthto Your Health

• Complexity will bite you at every turn
?Minimize number of moving parts

• Complexity can be exponential in part count
unless extreme vigilance is applied

• But vigilance is costly especially reactive
?Apply vigilance towards minimizing part

count instead

01MAR02 GOO 8

Simplified DesignSimplified Design

Simplification
• No sealing
• Dynamic typing
• No databases
• Type-based opts only
• No static modeling
• Prefix syntax
• No VM

Recover x with
• Global info / d-comp
• Type inference
• Save-image
• C (C--) backend
• Use real world
• Short + nesting ops
• (Obfuscated) Source

01MAR02 GOO 9

Goal: To Develop Simple, Goal: To Develop Simple,
Powerful, and Useful TechniquesPowerful, and Useful Techniques
• Motivated from Lightweight Languages

conference at MIT 2001

• Understandable
• Adoptable
• Leveragable

01MAR02 GOO 10

GOO: Speed and InteractivityGOO: Speed and Interactivity

Always optimized
Always malleable

01MAR02 GOO 11

Related WorkRelated Work

• Lisp Machine Progress Report,
1977, MIT

• Harlequin and Apple Dylan,
1990, Moon et al

• Adaptive Optimization For
Self: Reconciling High
Performance With Exploratory
Programming (1994), Urs
Holzle

• Java optimization in the face of
class loading, 2001, ???

• Specialized hardware
• Reduced interactivity

• Increased complexity

• Reduced interactivity

01MAR02 GOO 12

Incremental Global OptimizationIncremental Global Optimization

• Always compiled
• Dependency tracks assumptions during

compilation
• Reoptimizes dependents upon change

• Knob for adjusting number of dependents to
make recompilation times acceptable

01MAR02 GOO 13

Managing ComplexityManaging Complexity

1. Dynamic compilation
2. Dependency Tracking
3. Type-based optimizations
4. Subclass? tests
5. Multimethod dispatch

01MAR02 GOO 14

Complexity Example One:Complexity Example One:
Dynamic CompilationDynamic Compilation

• So you want a dynamic compiler?
?Throw away interpreter
?Allow for more global optimizations

• But what about the ensuing complexity?
?Use source instead of VM

• Cut out the middle man
?Use C back-end and shared libraries (e.g., MathMap)

• More realistically C--
?Trigger compiler

• By global optimization dependencies
• Not profile information

01MAR02 GOO 15

Using C for Simple Using C for Simple
Dynamic CompilationDynamic Compilation

• Procedure
– Emit C code with g2c
– Compile C code with gcc
– Dynamically link with ld
– Load into running image with dlopen
– Run top level initialization code with dlvar and apply
– Lazily resolve variables within running image

• Fast Turnaround
– Typical interactive definitions take less than a second

01MAR02 GOO 16

Complexity Example Two:Complexity Example Two:
Dependency TrackingDependency Tracking

• Assumptions
– All optimization information is derived from bindings

• While compiling definition
– Establish current dependent
– Log binding accesses

• Trigger selective recompilation when
• Dependent binding properties change

• Can decrease recompilation by
• Recording compilation stage
• Rerunning recorded stage and beyond

01MAR02 GOO 17

Complexity Example Three:Complexity Example Three:
TypeType--based Optimizationsbased Optimizations

• First compile loosely
– Don’t look at binding values

• Execute resulting changes on image
– Building objects

• Recompile with optimizations
– Consult actual world for object properties
– Log dependencies

01MAR02 GOO 18

Complexity Example Four:Complexity Example Four:
Fast Fast Subclass?Subclass? TestsTests

• Crucial for the performance of languages
– Especially languages with dynamic typing

• Used for
– typechecks
– downcasts
– typecase
– method selection

• Used in
– Compiler - static analysis
– Runtime

01MAR02 GOO 19

Important Subclass? MeasuresImportant Subclass? Measures

• The predicate speed
• The subclass data initialization speed
• The space of subclass data
• The cost of incremental changes

– Could be full reinitialization if fast enough

01MAR02 GOO 20

Longstanding ProblemLongstanding Problem

• Choose either
– Simple algorithm with O(n^2) space or
– Complicated slower to initialize algorithm with

better space properties:
• PE – Vitek, Horspool, and Krall OOPSLA-97
• PQE – Zibin and Gil OOPSLA-01

01MAR02 GOO 21

PVE AlgorithmPVE Algorithm

• Blindingly fast to construct
– Fast enough for incremental changes

• One page of code to implement
• Comparable to PE on wide range of real-world

hierarchies
– E.g. 95% compression on 5500 class flavors hierarchy

(4MB bit matrix)
• Exhibits approximately n log n space
• Paper available: www.jbot.org/pve

01MAR02 GOO 22

Complexity Example Five: Complexity Example Five:
DispatchDispatch

• For a given generic function and arguments
choose the most applicable method

• Example:
– Gen: (+ x y)
– Mets: num+ int+ flo+

– Args: 1 2

– Met: int+

• Typical solution is method cache
– Concrete argument classes are keys

01MAR02 GOO 23

Subtype? Based Dispatch Subtype? Based Dispatch
MethodologyMethodology

Steps
• Dynamic subtype? based

decision tree
– Choose more specific

specializers first
– Choose unrelated

specializers with stats

• Inline small methods
• Inline decision trees into

call-sites

Examples
• (fun (x y)

(if (isa? x <int>)
...)))

– Discriminate int+ and flo+
before num+

– Discriminate int+ before
flo+

• int+ (and slot accessors)
• (+ x 1) (allowing partial

evaluation at call-site)

01MAR02 GOO 24

Subtype? Based Dispatch Subtype? Based Dispatch
Happy SynergiesHappy Synergies

• Few moving parts
• “tag-checked” arithmetic for free
• Static dispatch for free
• One arg case comparable to vtable speed

– Fewer indirect jumps

• Dynamic type-check insensitive to class
numbering

01MAR02 GOO 25

GOO StatusGOO Status

Working
• Fully bootstrapped
• Linux and Win32

Ports
• Runtime system tuned
• C based dynamic

compiler
• SWIG backend +

GTK

In progress
• Decision tree

generation
• Dependency tracking
• Fast subclass?
• Type inference
• Parameterized types
• GUI

01MAR02 GOO 26

ChallengesChallenges

• Live update of objects after class
redefinition

• Patching of pending functions
• Incremental interprocedural analysis
• Smart inlining

01MAR02 GOO 27

GOO Credits EtcGOO Credits Etc

• Thanks to
– Craig Chambers
– Eric Kidd, James Knight, and Andrew Sutherland
– Greg Sullivan
– Howie Shrobe (and DARPA) for funding

• To be open sourced in the coming weeks:
– www.jbot.org/goo/

01MAR02 GOO 28

Quick CQuick C---- RequestsRequests

• Dynamic Compilation
• Debugging
• GC
• Profiling

01MAR02 GOO 29

Dynamic Compilation SupportDynamic Compilation Support

• In memory code generator
• In memory linker
• Relocatable code
• Integration with gc

01MAR02 GOO 30

CC---- Debugging SupportDebugging Support

• Source locations
• Stack walking
• Live local variables
• Execute within a frame
• Switch threads
• Force threads to safe points

01MAR02 GOO 31

GC SupportGC Support

• Precise GC
• Find all references for live patching

01MAR02 GOO 32

Profiling SupportProfiling Support

• Low overhead
• Reasonably precise

01MAR02 GOO 33

More InformationMore Information

• Dynamic Languages Group
– www.ai.mit.edu/projects/dynlangs
– 08FEB02: MAST: A dynamic language for

active network programming, Dimitris
Vyzovitis, MIT Media Lab

• GOO
– www.jbot.org/goo

