Jonathan Bachrach

MIT Al Lab

Preliminary work
Introduce challenge

Present GOO

— Introduce language

— Sketch implementation
— Report status

Reguest Quick C— features

e Don't have to trade off fun for speed etc.
* Don’t need complicated implementation

* Requires forced rethinking and reevaluation of
— Technologies - faster, bigger, cheaper
— Architecture - dynamic compilation
— Assumptions - ...

* Research/Teaching vehicle
— For rethinking language design and
Implementation

e Reaction to a Reaction ...

o Targetted for high-performance/interactive
software development for
— Embedded systems
— Electronic music

Features

Pure object-oriented
Multimethods

— Slot accessorsas well
Dynamic types

— Ext. param types
Modules

Macros

Restartable exceptions

Builds on

Proto
Dylan
Cecll
CLOS
Scheme
Smalltalk

PLDI Core Wars

— 10K Lines Implementation *
— 10 Page Manual **
— Hard Limit — “ pressure makes pearls’

Interpreter Semantics
Speed through “partial evaluation”
|mplementation Serendipity

« Complexity will bite you at every turn
eMinimize number of moving parts

e Complexity can be exponential In part count
unless extreme vigilance is applied

e But vigilance is costly especially reactive

Apply vigilance towards minimizing part
count Instead

Simplification
No sealing
Dynamic typing

No databases
Type-based opts only
No static modeling
Prefix syntax

No VM

Recover x with
e Global info/ d-comp

Type inference
Save-image

C (C--) backend
Use real world
Short + nesting ops
(Obfuscated) Source

Motivated from Lightweight Languages
conferenceat MIT 2001

Understandable
Adoptable
L everagable

Always optimized

Always malleable

Lisp Machine Progress Report,
1977, MIT

Harleguin and Apple Dylan,
1990, Moon et a

Adaptive Optimization For
Self: Reconciling High
Performance With Exploratory
Programming (1994), Urs
Holzle

Java optimization in the face of
classloading, 2001, ?77?

Specialized hardware
Reduced interactivity

Increased complexity

Reduced interactivity

Always compiled

Dependency tracks assumptions during
compilation

Reoptimizes dependents upon change

Knob for adjusting number of dependentsto
make recompilation times acceptable

. Dynamic compilation
. Dependency Tracking

. Type-based optimizations
. Subclass? tests
. Multimethod dispatch

e S0 you want a dynamic compiler?
& Throw away interpreter
&5 Allow for more global optimizations

« But what about the ensuing complexity?
zUse source instead of VM
e Cut out the middle man

&sUse C back-end and shared libraries (e.g., MathMap)
 Moreredisticaly C--

&5 Trigger compiler
* By global optimization dependencies
* Not profile information

e Procedure
— Emit C code with g2c
— Compile C code with gcc

— Dynamically link with |d

— Load into running image with dlopen

— Run top level initialization code with divar and apply
— Lazily resolve variables within running image

e Fast Turnaround
— Typical interactive definitions take less than a second

Assumptions
— All optimization information is derived from bindings

While compiling definition

— Establish current dependent
— Log binding accesses
Trigger selective recompilation when
e Dependent binding properties change
Can decrease recompilation by
* Recording compilation stage
* Rerunning recorded stage and beyond

e First compile loosely
— Don’t look at binding values

e Execute resulting changes on image

— Building objects

e Recompile with optimizations
— Consult actual world for object properties
— Log dependencies

e Crucial for the performance of languages
— Especially languages with dynamic typing
o Usedfor

— typechecks
— downcasts
— typecase
— method selection
 Usedin
— Compiler - static analysis
— Runtime

ne predicate speed
ne subclass data initialization speed

ne space of subclass data

ne cost of incremental changes
— Could be full reinitialization If fast enough

e Choose elther
— Simple algorithm with O(n"2) space or
— Complicated slower to initialize algorithm with

better space properties.
« PE —Vitek, Horspool, and Krall OOPSLA-97
 PQE —Zibinand Gl OOPSLA-01

Blindingly fast to construct
— Fast enough for incremental changes

One page of code to Implement

Comparable to PE on wide range of real-world
hierarchies

— E.g. 95% compression on 5500 class flavors hierarchy
(4MB bit matrix)

Exhibits approximately n log n space
Paper available: wwv. | bot . or g/ pve

e For agiven generic function and arguments
choose the most applicable method

e Example:

- Gen: (+ X Yy)
— Mets numt int+ flo+
— Args 12
— Met: int+
* Typica solution is method cache
— Concrete argument classes are keys

Steps

Dynamic subtype? based
decision tree

— Choose more specific
specializersfirst

— Choose unrelated
specializers with stats

Inline small methods

|nline decision trees into
cal-sites

Examples

(fun (x y)
(if (isa? x <int>)

o))

— Discriminateint + and f | o+
before numt

— Discriminatei nt + before
flo+

i nt+ (and slot accessors

(+ x 1) (alowing partial
evaluation at call-site)

Few moving parts
“tag-checked” arithmetic for free

Static dispatch for free

One arg case comparable to vtable speed
— Fewer indirect jJumps

Dynamic type-check insensitive to class
numbering

Working
~ully bootstrapped
_inux and Win32

Ports

Runtime system tuned
C based dynamic
compiler

SWIG backend +
GTK

N progress

e Decision tree
generation
Dependency tracking
Fast subclass?
Type inference
Parameterized types
GUI

Live update of objects after class
redefinition
Patching of pending functions

Incremental interprocedural analysis
Smart inlining

 Thanksto
— Craig Chambers
— Eric Kidd, James Knight, and Andrew Sutherland
— Greg Sullivan
— Howie Shrobe (and DARPA) for funding

e To be open sourced in the coming weeks:
— WWW. | bot . or g/ goo/

Dynamic Compilation
Debugging

GC
Profiling

In memory code generator
In memory linker

Relocatable code
Integration with gc

Source locations
Stack walking

Livelocal variables
Execute within a frame
Switch threads

Force threads to safe points

e Precise GC
 Find all referencesfor live patching

* Low overhead
e Reasonably precise

* Dynamic Languages Group

— 0BFEBO2: MAST: A dynamic language for

active network programming, Dimitris
Vyzovitis, MIT MediaLab

C 00
—WwWw. | bot . or g/ goo

