August 26, 2009		RFC THG YYYY-MM-DD.v1
August 26, 2009		RFC THG YYYY-MM-DD.v1
RFC: Enabling a Strict Consistency Semantics Model in Parallel HDF5
Mohamad Chaarawi
Quincey Koziol
Consistency semantics define the outcome of multiple I/O accesses to the same file. Any I/O library defines these rules to let users know what to expect when accessing data on the file. A process that writes data to the file needs to be aware when those changes made are actually visible to itself (if it tries to read back that data) or to other processes who are concurrently accessing the file independently or collectively. This RFC describes the consistency semantics model for the Parallel HDF5 library when it comes to metadata and raw data access, and outlines some issues with that model and approaches to overcome them.

Introduction
[bookmark: _GoBack]Parallel HDF5 provides users with an option to have multiple processes perform I/O to the file system at the same time. In addition, the HDF5 library makes use of virtual file drivers to take care of the lower level I/O accesses to the file. Each of those drivers has certain consistency rules that define the outcome of accessing the file. A process that writes data to the file needs to be aware of when those changes made are actually visible to itself (if it tries to read back that data) or to other processes that may be concurrently accessing the file independently or collectively.
There are several scenarios that arise from parallel access to the file system using the MPI-I/O file driver, but the most common cases include:
1. Each process accesses its own separate file: There are no conflicts in this case, which means data written by a process is visible immediately to that process.
2. All processes open the file(s) in Read-only mode: All processes will read exactly what is in the file
3. Multiple processes access the same file with read-write operations, which is the most common scenario and the scenario discussed in this document.
Depending on the file driver being used, the consistency varies. For example, the MPI-POSIX driver guarantees sequential consistency[footnoteRef:1] because POSIX I/O provides that guarantee. Consider a scenario with 2 processes accessing data in the same file and the same location: [1: The term sequential consistency means that all operations to access data on disk appear to be atomic and consistent with the order of operations in a program.]

	Process 0
	Process 1

	1) write ()
	1)

	2) MPI_Barrier()
	2) MPI_Barrier()

	3)
	3) read ()

POSIX I/O guarantees that Process 1 will read what Process 0 has written, because of the atomicity of the read and write calls and the synchronization using the barrier that ensures that Process 1 will call the read function after Process 0 is finished with the write function.
On the other hand, the MPI-I/O driver does not give that guarantee. If we take the example above and substitute the read() and write() calls with MPI_File_read_at() and MPI_File_write_at() respectively, MPI-I/O, in its default settings, does not guarantee sequential consistency. In the example, Process 1 is not guaranteed that it will read what Process 0 writes. In fact, the read might occur before, after, or even during the write operation is taking place. MPI-I/O does however provide different options to ensure sequential consistency or user imposed consistency, which we will discuss more in the next sections. For a full discussion on MPI-I/O consistency semantics, please refer to the MPI-2.2 standard (http://www.mpi-forum.org/docs/ see section 13.6, page 437, line 44).
This RFC describes the consistency semantics model for the Parallel HDF5 library when it comes to metadata and raw data access to a shared file among processes using the MPI-I/O file driver, and outlines some issues with that model and approaches to overcome them.
Motivation
MPI provides the user with options to impose different levels of consistency. If the user sets the atomicity flag to true, all MPI access functions are guaranteed to execute atomically. For example:
	Process 0
	Process 1

	1) MPI_File_write_at ()
	1) MPI_File_read_at ()

The read by process 1 will read the entire data before the write by process 0 occurs or after (not during). If the user wishes to impose an ordering between the read and write operations, a barrier (or any other method to ensure ordering) can be used. For example:
	Process 0
	Process 1

	1) MPI_File_set_atomicity (fh, TRUE)
	1) MPI_File_set_atomicity (fh, TRUE)

	2) MPI_File_write_at()
	2)

	3) MPI_Barrier()
	3) MPI_Barrier()

	4)
	4) MPI_File_read_at ()

This will ensure that Process 1 reads what Process 0 has written (the read happens logically after the write).
There are other ways for the user to impose this level of consistency on file access operations:
1) Close the file after the write operation (with all processes) and re-open it, then issue the read operation.
2) Ensure that no write sequence on any process is concurrent with a read or write sequence on any other process. This is a general characterization of the sync-barrier-sync construct, and is a more complicated way to impose a strict consistency semantics model. Please refer to the MPI standard for a more detailed discussion on this method.
	Process 0
	Process 1

	1) MPI_File_write_at()
	1)

	2) MPI_File_sync()
	2) MPI_File_sync()

	3) MPI_Barrier()
	3) MPI_Barrier()

	4) MPI_File_sync()
	4) MPI_File_sync()

	5)
	5) MPI_File_read_at ()

The previous sequence will ensure that process 1 reads what process 0 has written.
PHDF5 Metadata Consistency Semantics
In the parallel version of the HDF5 library, there are several constraints that limit the ability to update metadata on disk. To handle synchronization issues, all HDF5 operations that modify metadata are required to be collective. Internally, the metadata cache running on process 0 of the file communicator is responsible for managing access to metadata on disk. All the other caches must retain dirty metadata until the process 0 cache tells them that the metadata is clean (i.e. on disk). The actual flush of metadata entries to disk is currently implemented in two ways:
A – Single Process (Process 0) writes:
1)	perform a barrier
2)	process 0 writes each piece of metadata individually
3)	process 0 broadcasts the list of flushed metadata to other processes
4)	all processes mark the flushed metadata entries as clean in their cache

B – Distributed:
1)	perform a barrier
2)	process 0 broadcasts the list of metadata to flush to other processes
3)	each process determines which pieces of metadata it should write
4)	each process writes each piece of metadata independently
5)	each process participates in an exchange of whether any errors occurred
6)	all processes mark all flushed metadata entries as clean in their cache

At first glance, this approach appears to guarantee the sequential consistency of access to the file’s metadata, since there can be no conflicting access by different processes to the same metadata at once. However, considering the default consistency semantics of MPI-I/O (which is the interface used to read/write metadata on disk for parallel HDF5), sequential consistency can be broken with a particular access pattern: if a process tries to access a piece of metadata that was previously dirty in the cache and then marked as clean and evicted using either approach described above, and this same process was not the process that actually wrote that piece of metadata to disk, there is no guarantee that the actual metadata issued in the write call actually hit the disk before the read call is issued.
To put this in an HDF5 example, consider the following scenario:
	Process 0
	Process 1

	1) H5Oset_comment()
	1) H5Oset_comment()

	2) …
	2) …

	3)
	3) H5Oget_comment()

All processes set a comment on an object O collectively. Process 1 comes in later and tries to retrieve that comment. Suppose that before process 1 issues the H5Oget_comment call, a metadata flush is triggered and using either approach A or B (described earlier), process 0 ends up writing the metadata of object O to disk, and then informs process 1 that this piece of metadata is clean, so process 1 evicts it from its cache. When Process 1 calls H5Oget_comment, it goes back to disk to read the metadata for object O, specifically the comment. However, since MPI, in its default mode, is not atomic and does not guarantee sequential consistency, process 1 might actually read the old comment, the new one, or even an undefined value. This scenario can be translated to the following simple access to the same region in the file:
	Process 0
	Process 1

	1) MPI_File_write_at()
	1)

	2) MPI_Barrier()
	2) MPI_Barrier()

	3)
	3) MPI_File_read_at ()

In this case, as explained in the previous section, MPI-I/O does not guarantee that process 1 will actually read what process 0 has written, and therefore the consistency semantics for metadata operations are not guaranteed to be sequential with the current implementation.
One solution to the above issue is to enable MPI atomic mode. With atomic mode enabled, all file operations are guaranteed to execute with sequential consistency semantics. The major issue with atomic mode is that the performance drops significantly when reading/writing to the file.
The race condition described above is rare to encounter and has not yet been reported by any application that has used parallel HDF5. While it’s important to handle the issue, it might be valuable to switch the metadata writes from the cache to be collective first, and then look at the consistency issue later, when more efficient solutions might come up. Additionally, this issue will disappear when the metadata server implementation we are working on comes into play.
PHDF5 Raw Data Consistency Semantics
As mentioned previously, the consistency semantics of data access is dictated by the virtual file driver used. In the parallel HDF5 library, when the MPI-I/O driver used, the MPI-I/O consistency semantics model is enforced. HDF5 uses the default MPI semantics which does not guarantee sequential consistency. This means that access to file happens in a non-atomic and arbitrary order. Although MPI-I/O provides an option for atomic (by enabling atomicity) and ordered access to the file (using sync-barrier-sync or atomicity-barrier), the parallel HDF5 library does not provide this functionality through its API.
If a user wants to read elements of a dataset after writing them, the only way to be able to achieve this functionality is by closing the file after the write and reopening it again. Otherwise, a dataset read operation following a write (to the same dataset elements by a different process) is considered undefined.
Recommendation
The solution to provide stricter consistency semantics for file access is to provide the user with the same functionality that MPI offers to impose different levels of consistency. This would require adding the following two functions to the HDF5 API:
1) H5Fset_mpio_atomicity (hid_t file_id, hbool_t flag): enables (flag = 1) or disables (flag = 0) atomicity on a file opened with the MPI-IO VFD
2) H5Fsync (hid_t file_id): this call causes all previous writes to the file to be transferred to the storage device
Setting atomicity to true will call the MPI atomicity function (MPI_File_set_atomicity) which sets atomicity to true on the MPI file handle. The sync function will also call its MPI counterpart (MPI_File_sync). Using the two routines described above, the user will be able to enforce stricter consistency semantics similarly to what MPI provides. To be able to guarantee sequential consistency among different processes, the use of barriers (MPI_Barrier) will be required by either:
1)	setting atomicity to true, then calling MPI_Barrier() to synchronize processes after writes/before reads
2)	using the sync-barrier-sync construct
In certain scenarios however, just setting atomicity to true in the MPI-I/O file driver does not suffice, because an H5Dwrite (for example) may translate into multiple MPI_File_write_at functions underneath. This happens in all cases where the high level file access routine translates to multiple lower level file access routines. The following scenarios will encounter this issue:
· Non-contiguous file access using independent I/O
· Partial collective I/O using chunked access
· Collective I/O using filters or when data conversion needs to happen

In any of those scenarios, the following case:
	Process 0
	Process 1

	1) H5Fset_mpio_atomicity (fid, true)
	1) H5Fset_mpio_atomicity (fid, true)

	2) H5Dwrite()
	2) H5Dread()

would not yield the expected result if H5Fset_mpio_atomicity is implemented by just setting MPI-I/O atomicity to true, because it translates into the following:
	Process 0
	Process 1

	MPI_File_set_atomicity (fh, 1)
	MPI_File_set_atomicity (fh, 1)

	MPI_File_write_at()
MPI_File_write_at()
MPI_File_write_at()
…
	MPI_File_read_at()
MPI_File_read_at()
MPI_File_read_at()
…

This means that atomicity is done per 1 MPI file access operation and not 1 HDF5 operation, which is highly unlikely what the user wants. The use of barriers after the H5Dwrite() and before the H5Dread() in addition to setting atomicity to true in the user’s application would ensure additional ordering semantics and would actually solve this issue, since the barrier will guarantee that all underlying write operations will execute atomically before the read operations starts.
Revision History
	February 27, 2011:
	Version 1 circulated for comment within The HDF Group.

Page 1 of 3
Page 6 of 6
image1.jpeg
A

The HDF Group

