
Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 1

5 Extending the Alternative: A Scaling Device and Queues
Many machines used in automated processes have some means of monitoring their operation, for

example, by calculating running averages of specific values and ensuring they stay within a specified

range. If they go out of range then the machine recalibrates itself. In this chapter we shall build a model

of such a device, but without having to interface to a real machine!

5.1 The Scaling Device Definition

The scaling device
1
 reads incoming integers that arrive every second. The device then multiplies the

incoming value by its current scaling factor, which it then outputs, together with the original value. The

scaling factor is doubled at a regular interval, of say, 5 seconds. In addition, there is a controlling

function that suspends the operation of the scaling device again at regular intervals, of say, 7 seconds to

simulate the testing of its operation. When it is suspended the scaling device outputs its current scaling

factor to the controller. At some time later, the controller, having computed another scaling factor, will

inject the new scaling factor into the controller, which resumes its normal mode of operation. While the

scaling device is suspended by the controller it outputs all input values unscaled.

The structure of the system, showing the channels that will be used for the communications specified

above is shown in Figure 5-1.

Figure 5-1 Structure of the Scaling Device

The processes GNumbers, GFixedDelay and GPrint are available in the package groovyPlugAndPlay.

Thus the discussion revolves around the structure of the remaining two processes.

1 Belapurkar A, http://www-128.ibm.com/developerworks/java/library/j-csp2/

GNumbers GFixedDelay Scale GPrint

Controller

data timedData scaledData

factor injector suspend

http://www-128.ibm.com/developerworks/java/library/j-csp2/#author#author
http://www-128.ibm.com/developerworks/java/library/j-csp2/

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 2

5.1.1 The Controller Process

The code that implements the Controller process is shown in Listing 6-1.

01 class Controller implements CSProcess {

02 def long testInterval = 7000
03 def long computeInterval = 700
04 Def int addition = 1

05 def ChannelInput factor
06 def ChannelOutput suspend
07 def ChannelOutput injector

08 void run() {
09 def currentFactor = 0
10 def timer = new CSTimer()
11 def timeout = timer.read()

12 while (true) {
13 timeout = timeout + testInterval
14 timer.after (timeout)
15 suspend.write (0)
16 currentFactor = factor.read()
17 currentFactor = currentFactor + addition
18 timer.sleep(computeInterval)
19 injector.write (currentFactor)
20 }
21 }
22 }

Listing 5-1 Code of the Controller Process

From Figure 5-1 we can see that Controller has three channel properties {4-6}. In addition, it has two

timeout values, one testInterval {2} determines the period between successive tests of the scaling

device. The other, computeInterval {3} is used to simulate the time it takes to compute the revised

scaling factor.

The JCSP class CSTimer provides a means of manipulating time in a consistent and coherent manner. An

instance of CSTimer, called timer is defined {10}. The timer can be read at any instant and the current

long value of the system clock in milliseconds is returned, which also justifies the type long for the

interval properties defined previously. The value of timeout is set to the current time {11}. The device

operates as a never ending loop {12-21}, which for most machine tools is reasonable.

Within the loop the timeout is incremented by the testInterval {13}, which must be some time in the

future. The after operation on timer causes the process to be suspended until the value of the current

time is after the indicated alarm time. While a process is suspended in this manner it will consume no

processing resource. Once the testInterval has elapsed, the Controller writes a signal to the Scale

process to suspend its operation {15}. The value communicated does not matter, so the value 0 is

perfectly adequate. The Controller then reads the current scaling factor from the Scale process into

currentFactor using the channel factor {16}. The value of currentFactor is then incremented {17}

by the value contained in the property addition {4}, to simulate a change in the scaling factor. The time

to undertake this recalculation is then simulated by suspending the process for the computeInterval by

calling the sleep method on the timer {18}. The sleep method deschedules the process for the

specified sleeping time. The process consumes no processor resource while it is sleeping. In this case the

effect of after and sleep are the same, achieved in a different manner. In some situations, the after

method will be the more appropriate because it provides relative time. The sleep method provides an

absolute value. Once the process has been rescheduled, it writes {19} the newly computed

currentFactor on the injector channel to the Scale process.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 3

5.1.2 The Scale Process

The structure of the Scale process is shown in Listings 5-2 and 5-3. The operation of the Scale process

can be partitioned into two distinct parts; when it is operating in the normal mode and when it is

suspended. In the normal mode it will accept inputs from the channels timedData and suspend, see

Figure 5-1. It will also respond to timer alarms indicating that the scaling factor should be doubled. In

the suspended mode it will only respond to inputs from the channels timedData and injector. To

reflect these situations a set of guards will be needed for each mode. Furthermore, the suspended set will

only be considered when the process has moved from the normal mode into the suspended mode.

23 class Scale implements CSProcess {

24 def int scaling = 2
25 Def int multiplier = 2
26 def ChannelOutput outChannel
27 def ChannelOutput factor
28 def ChannelInput inChannel
29 def ChannelInput suspend
30 def ChannelInput injector

31 void run () {
32 def SECOND = 1000
33 def DOUBLE_INTERVAL = 5 * SECOND
34 def NORMAL_SUSPEND = 0
35 def NORMAL_TIMER = 1
36 def NORMAL_IN = 2
37 def SUSPENDED_INJECT = 0
38 def SUSPENDED_IN = 1

39 def timer = new CSTimer()
40 def normalAlt = new ALT ([suspend, timer, inChannel])
41 def suspendedAlt = new ALT ([injector, inChannel])

42 def timeout = timer.read() + DOUBLE_INTERVAL
43 timer.setAlarm (timeout)

Listing 5-2 The Properties and Initialisation of the Scale Process

The channel properties are defined {24-30}, together with the initial scaling value {24} and the

multiplier that will be applied to the scaling factor {25}. The inChannel property {28} is connected to

timedData of Figure 5-1 and outChannel to scaledData {26}. Within the run() method a number of

constants are defined; DOUBLE_INTERVAL {33} specifies the number of milliseconds between the doubling

of the scaling factor. The remainder are constants {34-38} used to identify which case is to be

considered when the switch statements associated with the alternatives are processed. A timer is

defined {39}, followed by the two different alternatives {40, 41}. Both of the alternatives will be

accessed using a priSelect method and thus the ordering of the guards in the alternatives is important

and should always start with the highest priority going to the lowest in sequence. The alternative

normalAlt applies when the device is not in a suspended state. The highest priority guard is that

associated with the suspend channel. The next highest will result from a timer alarm and the lowest is

the input of some data on the inChannel. In the suspended state the suspendedAlt will apply and this

is just an alternation over the injector and inChannel channels because timer alarms are ignored. At

{42} the timeout for the first doubling of the scaling factor is defined by reading the timer and adding

the doubling interval. An alarm on the timer is made by calling the method setAlarm {43} with the

required time, which must be some time in the future. This means that normalAlt will be enabled on the

timer alternative once the value of the timer has increased beyond timeout. A timer contained within

an alternative guard that is disabled, consumes no processor resource, until the alarm is enabled.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 4

44 while (true) {
45 switch (normalAlt.priSelect()) {

46 case NORMAL_SUSPEND :
47 suspend.read()
48 factor.write(scaling)
49 def suspended = true
50 println "Suspended"

51 while (suspended) {
52 switch (suspendedAlt.priSelect()) {

53 case SUSPENDED_INJECT:
54 scaling = injector.read()
55 println "Injected scaling is ${scaling}"
56 suspended = false
57 timeout = timer.read() + DOUBLE_INTERVAL
58 timer.setAlarm (timeout)
59 Break

60 case SUSPENDED_IN:
61 def inValue = inChannel.read()
62 def result = new ScaledData()
63 result.original = inValue
64 result.scaled = inValue
65 outChannel.write (result)
66 break
67 } // end-switch
68 } //end-while
69 break

70 case NORMAL_TIMER:
71 timeout = timer.read() + DOUBLE_INTERVAL
72 timer.setAlarm (timeout)
73 scaling = scaling * multiplier
74 println "Normal Timer: new scaling is ${scaling}"
75 break

76 case NORMAL_IN:
77 def inValue = inChannel.read()
78 def result = new ScaledData()
79 result.original = inValue
80 result.scaled = inValue * scaling
81 outChannel.write (result)
82 break
83 } //end-switch
84 } //end-while
85 } //end-run
86 }

Listing 5-3 The Scale Process Main Loop

The main loop of the device Listing 5-3, comprises {44-84} and is created by means of a never ending

while loop. At the start of the main loop the device is presumed to be in the normal state and thus we

switch on the normalAlt {45}. If none of the guards is ready the process waits until one becomes

enabled. Each time an alternative is executed the guards are evaluated to determine which are enabled

and then a selection is made form the ready ones according to the type of select operation undertaken.

If the enabled alternative results from an input on the suspend channel then the case NORMAL_SUSPEND

will be obeyed {46}. First, the channel suspend must be read {47}, the value of which can be ignored

because this is just a signal to enter the suspend state. Recall that the Controller process wrote a

nominal value {15} of 0. The Scale process then writes its current scaling factor to the factor channel

{48}. The property suspended is defined and set true {49}. A message is printed {50} and then the

loop associated with the suspended state is entered {51}. In this state the process switches on

suspendedAlt {52}, which has two alternatives.

If the enabled alternative is an input on the injector channel the case SUSPENDED_INJECT is obeyed

{53}. The new value of scaling is read from the injector channel {54} and a message displaying the

new factor printed {55}. The value of suspended is now reset {56} to false, which will cause the

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 5

controlling while loop {51} to terminate. Because the injector input is also taken as an indication that

normal operation can resume, the timer alarm can be reset {57-58}.

In the suspended state, the only other alternative that can occur, results from input on the inChannel,

this causes the SUSPENED_IN case to be obeyed {60}. The channel inChannel is read into inValue

{61}. A variable result of type ScaledData is defined {62}, see Listing 5-4. The device in the

suspended state does not apply the scaling to any incoming data and so both the original and scaled

values of result are set to inValue {63-64}. The result object is then written to outChannel {65}.

The remaining cases relate to the operation of the device in the normal state. If a timer alarm occurs the

code associated with the NORMAL_TIMER case is obeyed {70}. The timer’s timeout alarm is reset for the

next doubling period {71-72}. The scaling is multiplied by multiplier, which is two for doubling {73} as

required by the device specification and an appropriate message printed {74}. The final case deals with

inputs from inChannel {76}. The value is read from inChannel into inValue {77} and placed in the

original property {79}of a new result object {78}. A scaled value is placed in the scaled property of

a new result object {80}, which is then written to outChannel {81}.

5.1.3 The ScaledData Object

The ScaledData object is used to pass a pair of values from the Scale process to the GPrint process see

Figure 5-1. Its structure is shown in Listing 6-3.

87 class ScaledData implements Serializable {

88 def int original
89 def int scaled

90 def String toString () {
91 def s = " " + original + "\t\t" + scaled
92 return s
93 }
94 }

Listing 5-4 The ScaledData Object

The properties of the object; original and scaled are defined {88, 89} and then a toString() method is

defined {90-93} that is used when the object is printed.

More importantly, this is the first instance of user defined objects being communicated between

processes. The first aspect to notice is there are no public data manipulation methods, other than implicit

getters and setters that are created by the Groovy environment automatically, because in the parallel

environment we encapsulate the data so that it is processed only within processes. It is not possible for

one process to access another object’s properties in another process to modify its state by calling public

methods.

Concurrent processes pass object references over channels and thus a sending process has to guarantee

that once it has written an object to a channel it does not modify that object in any way. This is most

easily achieved by defining a new object instance for each write operation, see {62, 78}. In some cases, it

may be necessary, for memory management reasons, to reuse an object and to ensure that a written object

is not overwritten a deep copy is taken. An interface JCSPCopy which contains a single method copy() is

provided in the org.jcsp.groovy package to facilitate this requirement. The programmer has to write

the code to achieve the deep copy of the object. This can then be applied recursively to any nested

objects.

If an object is to be passed between networked processes then a copy of the object is passed between the

processes and so the object must implement the interface serializable. In this case it is not necessary

to undertake the method copy because the serialization mechanism achieves this requirement.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 6

5.1.4 Exercising the Scale Device Network

Listing 5-5 gives the script that implements the process network shown in Figure 5-1.

95 def data = Channel.createOne2One()
96 def timedData = Channel.createOne2One()
97 def scaledData = Channel.createOne2One()
98 def oldScale = Channel.createOne2One()
99 def newScale = Channel.createOne2One()
100 def pause = Channel.createOne2One()

101 def network = [new GNumbers (outChannel: data.out()),
102 new GFixedDelay (delay: 1000,
103 inChannel: data.in(),
104 outChannel: timedData.out()),
105 new Scale (inChannel: timedData.in(),
106 outChannel: scaledData.out(),
107 factor: oldScale.out(),
108 suspend: pause.in(),
109 injector: newScale.in(),
110 scaling: 2),
111 new Controller (testInterval: 7000,
112 computeInterval: 700,
113 factor: oldScale.in(),
114 suspend: pause.out(),
115 injector: newScale.out()),
116 new GPrint (inChannel: scaledData.in(),
117 heading: "Original Scaled",
118 delay: 0)
119]

120 new PAR (network).run()

Listing 5-5 Script to Exercise the Scale Device

All the output appears in the Eclipse console window with the messages from the Scale process

intermingled with those from the output of the original and scaled data which appear in GPrint. The

delay property {123} of GPrint is set to 0 so that any output is produced immediately. There is

sufficient delay within the system caused by the GFixedDelay process to observe the process interactions.

5.2 Managing A Circular Queue Using Alternative Pre-conditions

A queue is a common data structure used in many applications. A number of cases have to be considered

as follows.

1. data can only be put into the queue if there is space in the queue

2. data can only be taken from the queue if the queue is not empty

 In a sequential implementation these states have to be tested before the queue can be manipulated and

dealing with the situations where either a put or get to or from the queue cannot be undertaken can be

problematic. A parallel implementation is much easier to design and specify because we can use an

alternative with pre-conditions to ensure that operations only take place when it is safe. Figure 5-2 shows

the basic structure that will be used to explain the operation of a queue.

The QProducer process puts a sequence of integers to the Queue process, where they are stored in a wrap-

around List. The QConsumer process attempts to get data from the Queue, which if there is data

available, is received by the process.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 7

Figure 5-2 The Queue Process Network

5.2.1 QProducer and QConsumer Processes

The source of the QProducer process is given in Listing 5-6.

121 class QProducer implements CSProcess {

122 def ChannelOutput put
123 def int iterations = 100
124 def delay = 0

125 void run () {

126 def timer = new CSTimer()
127 println "QProducer has started"

128 for (i in 1 .. iterations) {
129 put.write(i)
130 timer.sleep (delay)
131 }
132 put.write(null)
133 }
134 }

Listing 5-6 The QProducer Process script

The timer {126} is used to create a delay {130} between each write {129} to the put channel. A

sequence of integers from 1 up to iterations {123} is output on the put channel. It should be noted

that the write on the put channel may be delayed {129} if the queue has no available space. Once all

the values have been written to the put channel a null value is also written (132} to indicate that

processing has finished. This will be used to terminate the subsequent Queue and QConsumer processes.

The QConsumer process is specified in Listing 5-7. The use of the timer and associated delay {138,

140, 147} is the same as in QProducer. A Boolean running is defined {142} and is used to control the

main loop of the process. The main loop of the process {143-151} initially writes a signal value of 1 on

the get channel. The writing of this signal {144} may be delayed if the queue contains no available data.

A value is read from the receive channel {145} into the object v. This read operation will take place

immediately. The value that has been read is printed {146} after which the process may be delayed

{147}. If the value read is null {148} then running is set to false {149} and the process will terminate

at the next iteration of the while loop {143}.

QProducer Queue QConsumer
put

get

receive

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 8

135 class QConsumer implements CSProcess {

136 def ChannelOutput get
137 def ChannelInput receive
138 def long delay = 0

139 void run () {

140 def timer = new CSTimer()
141 println "QConsumer has started"
142 def running = true

143 while (running) {
144 get.write(1)
145 def v = receive.read()
146 println "QConsumer has read ${v}"
147 timer.sleep (delay)
148 if (v == null) {
149 running = false
150 }
151 }
152 }
153 }

Listing 5-7 The QConsumer Process

5.2.2 The Queue Process

The source for the Queue process is shown in Listing 5-8. The channel properties are defined {155-157}

corresponding to Figure 5-2 and the size of the queue is specified in the property elements and is initially

5 {158}. The alternative associated with the Queue process is defined as qAlt, which has guards

comprising the put and get channels {160}. A Boolean array, preCon, which has the same number of

elements as there are guards in qAlt, is defined {161}. Two constants PUT and GET are defined {162,

163} that are used to index the preCon array and also to identify the cases in the switch statement

associated with identifying the selected guard in the alternative.

The array preCon is used to record whether or not a new element can be put into the queue storage and

similarly whether an element is available. Initially, therefore preCon[PUT] is set true {164} because

there is bound to be space for a new element in the queue data structure because it must be empty.

Similarly, preCon[GET] is set false {165} because there is no data available in the queue. The List

data {166} provides the storage for the circular queue structure. The properties count, front and rear

{167-169} record the state of the queue storage in terms of the number of data values in the queue, the

location into which data can be added and removed from the queue respectively. The process is

implemented as a loop {171-192}, which is controlled by a Boolean running {170} that is set false

when a null value is communicated to the QConsumer process {183-185}.

The property index {172} indicates the alternative guard that has been selected. In order to be selected a

guard must have its associated preCon element set to true and its channel must be enabled to read an

input. Note how the pre-condition array is passed as a parameter to the alternative priSelect method

{172}. A choice is then made depending upon which guard has been selected.

In the case of PUT the value read from put is placed in data[front] {175}. A message is then printed

{176} and then the values of count and front are updated appropriately {177-178}. When GET is

selected, the signal communication on the get channel is read and ignored {181}. The value in

data[rear] is then written to channel receive {193}. The value in data[rear] is then tested to

determine whether the Queue process should terminate {183-185}. After which, the values of count and

rear are updated {186-187}. At the end of each loop of the queue process, the values stored in the

elements of the preCon array are updated based upon the relative values of count and elements {190,

191}.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 9

154 class Queue implements CSProcess {

155 def ChannelInput put
156 def ChannelInput get
157 def ChannelOutput receive
158 def int elements = 5

159 void run() {

160 def qAlt = new ALT ([put, get])
161 def preCon = new boolean[2]
162 def PUT = 0
163 def GET = 1
164 preCon[PUT] = true
165 preCon[GET] = false
166 def data = []
167 def count = 0
168 def front = 0
169 def rear = 0

170 def running = true
171 while (running) {

172 def index = qAlt.priSelect(preCon)
173 switch (index) {

174 case PUT:
175 data[front] = put.read()
176 println "Q: put ${data[front]} at ${front}"
177 front = (front + 1) % elements
178 count = count + 1
179 Break

180 case GET:
181 get.read()
182 receive.write(data[rear])
183 if (data[rear] == null) {
184 running = false
185 }
186 rear = (rear + 1) % elements
187 count = count - 1
188 break
189 }

190 preCon[PUT] = (count < elements)
191 preCon[GET] = (count > 0)
192 }
193 println "Q finished"
194 }
195 }

Listing 5-8 The Queue Process Definition

The benefit of this alternative based formulation is that the pre-condition array modifies the behaviour of

its underlying mechanism. Thus if the queue is full then preCon[PUT] is false and even if there is a

communication on the put channel it will not be permitted. Similarly, if preCon[GET] is false then no

signal on the get channel can be read, even if QConsumer has tried to write to it.

5.5 Summary

This chapter has explored the alternative mechanism together with its associated pre-condition Boolean

array. It has shown by means of an example based upon a realistic system and one found in many

program development applications that alternative has the ability to capture many aspects of real world

systems and to provide a flexible means of modelling such systems.

5.6 Exercises

1. The accompanying web site contains a script, called TestQ, in package ChapterExercises/src/c5

to run the queue network. The delays associated with QProducer and QConsumer can be modified.

By varying the delay times demonstrate that the system works in the manner expected. Correct

operation can be determined by the QConsumer process outputting the messages “QConsumer has

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 10

read 1” to “QConsumer has read 50” in sequence. What do you conclude from these

experiments?

2. Reformulate the scaling device so that it uses pre-conditions rather than nested alternatives. Which is

the more elegant formulation? Why?

