
Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 1

14 Barriers and Buckets: Hand-Eye Co-ordination Test
In this chapter three shared memory synchronisation techniques are combined to provide control of a

highly dynamic environment. A Barrier provides a means whereby a known number of processes

collectively control their operation so they all wait at the barrier until all of them have synchronised with

the barrier at which time they are all released to run in parallel. An AltingBarrier is a specialisation of

the Barrier that allows it to act also as a guard in an Alternative. Finally, a Bucket provides a flexible

refinement of a barrier. Typically, there will be a collection of Buckets into which processes are placed

depending upon some criterion. Another process then, subsequently, causes a Bucket to flush all its

processes so they are executed in parallel. These processes will in due course, become idle, whereupon

they place themselves in other buckets. The next Bucket in sequence is then flushed and so the cycle is

repeated. Buckets can be used to control discrete event simulations in a very simple manner [HICSS].

The process that undertakes the flushing of the buckets must not be one of the processes that can reside in

a Bucket.

The aim of this example is to present a user with a randomly chosen set of targets that each appear for a

different random time. During the time the targets are available the user clicks the mouse over each of

the targets in an attempt to hit as many of the targets as possible. The display includes information of

how many targets have been hit and the total number of targets that have been displayed. The targets are

represented by different coloured squares on a black background and a hit target is coloured white. A

target that is not ‘hit’ before its self determined random time has elapsed is coloured grey. There is a gap

between the end of one set of targets and the display of the next set during which time the screen is made

all black. The minimum time for which a target is displayed is set by the user; obviously the longer this

time the easier it is to hit the targets. Targets will be available for a period between the shortest time and

twice that time. Figure 14-1 shows the screen, at the point when six targets have been displayed, and

none have yet been hit. The system has displayed a total of 88 targets of which 15 targets have been hit.

The minimum target delay was 900 milliseconds. It can be deduced there are 16 targets in a 4 x 4 matrix.

The solution presumes that each target is managed by its own process and that it is these processes that

are held in a Bucket until it is the turn of that Bucket to be flushed. When a target is enabled it displays

itself until either it is ‘hit’ by a mouse-click, in which case it turns white, or the time for which it appears

elapses and it is coloured grey. It is obvious that each of these target processes will finish at a different

time and because the number of targets is not predetermined a barrier is used to establish when all the

enabled target processes have finished. After this, the target process determines into which bucket it is

going fall and thereby remains inactive until that bucket is flushed. The other processes used in the

solution are shown in Figure 14-2.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 2

Figure 14-1 The Screen for the Hand-Eye Co-ordination Test

The system comprises a number of distinct phases each of which is controlled by its own barrier, which

depending on the context is either a simple Barrier or an AltingBarrier.

Figure 14-2 shows the system at the point where it is about to synchronise on the setUpBarrier. During

this setup phase there are no channel communications but the processes that synchronise on

setUpBarrier either have to initialise themselves in some manner or must not progress beyond a certain

point to ensure the system will not get out of step with itself. The setup phase only occurs once when the

system is initially executed. The processes that are not part of the setUpBarrier cannot make any

progress because they are dependent on other barriers or communications with processes that synchronise

on the setUpBarrier.

The BarrierManager is a process that is used to manage phase synchronisations and as such will be seen

in subsequent figures to be part of a number of other barriers. For ease of description the structure of

each phase will show only the relevant barrier and channels that are operative at that time. The separation

into these distinct phases also makes it easier to analyse the system from the point of view of its client-

server architecture, thereby enabling deadlock and livelock analysis.

The TargetFlusher and TargetProcess processes are the only processes that can manipulate the array

of Buckets, which are not shown on the diagram. The TargetProcesses are able to identify which

Bucket they are going to enter when they stop running. TargetFlusher is the only process that can

cause the execution of the processes contained with a Bucket. It is presumed that the cycle of a

TargetProcess is to wait until it is flushed from a Bucket; it then runs until it determines, itself, that it

has ceased to run at which point it causes itself to fallInto a Bucket, which it also determines.

The DisplayController process initialises the display window to black. It also initialises, to zero, the

information contained in the display widow as to the number of hits that have occurred and the total

number of targets that have been displayed.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 3

Figure 14-2 System At Setup Barrier Synchronisation

Figure 14-3 shows the system at the initBarrier synchronisation, which is the point at which those

targets that are executing have initialised themselves and the associated display window is showing the

targets. Prior to the initBarrier the only process that can execute is TargetController. The

TargetController requests the TargetManager to flush the next Bucket; a request that is passed onto

the TargetFlusher process. The TargetFlusher accesses the Buckets in sequence until it finds a non-

empty one. It then initialises the initBarrier with the number of TargetProcesses. It returns this

number to the TargetManager and then flushes the TargetProcesses, which start running. The

TargetManager then determines which of the TargetProcesses has been started by waiting for a

communication from each of them informing it of the identity of the running targets. These identities are

then formed into a List, which is then communicated to both the TargetController and

DisplayController processes.

The TargetController can now construct a ChannelOutputList that will be subsequently used to

communicate the location where mouse clicks occur to each of the TargetProcesses. Similarly, the

DisplayController can modify the display window to show the running targets.

TargetFlusher

TargetManager

TargetController

Target

Process 0

Target

Process 15

MouseBufferPrompt

MouseBuffer

Gallery

DisplayController

BarrierManager

setUpBarrier

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 4

Figure 14-3 System At the Initialise Barrier Synchronisation

The MouseBufferPrompt and MouseBuffer have a design similar to that used previously in the

manipulation of a queue (Chapter 6.2) and event handling (Chapter 11.2). MouseBuffer only accepts a

request from MouseBufferPrompt when it has already received an event on its mouseEvent channel. The

Gallery process is responsible both for the ActiveCanvas upon which the targets are displayed and the

detection and communication of mouse click events. At this stage the MouseBufferPrompt process has

no channel on which it can output points but that is not required until the system progresses to the next,

goBarrier phase.

The goBarrier is simply required to ensure that all the running TargetProcesses, the

TargetController and DisplayController have reached a state whereby the system can start

execution from a known state. As such this phase does not require any channel communication as shown

in Figure 14-4. Once these processes have synchronised the system enters the normal running state of the

system with some of the TargetProcesses executing.

Each of the Barriers used so far are of the simple variety because the number of processes that require

synchronising can be predetermined and there is no need for any of these Barriers to interact with a

possible communication or timer in an alternative. The communications are all required to have

completed before the processes can reach the synchronisation point. The remaining Barriers are of the

AltingBarrier variety because the requirement to synchronise can happen at the same time as a timer

alarm or communication occurs.

s

c

c

s

s

c

s

c

c

s

s

c

s

c

requestPoint receivePoint

mouseEvent

possibles hits

targetsActivated getActiveTargets

targetsFlushed
flushNextBucket

targetIdToManager

TargetFlusher

TargetManager

TargetController

Target

Process i

Target

Process j

MouseBufferPrompt

MouseBuffer

Gallery

DisplayController

BarrierManager

initBarrier

imageList

targetsActivatedToDC

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 5

Figure 14-4 System At the Go Barrier Synchronisation

Figure 14-5 shows the system structure when the TargetProcesses are waiting for mouse clicks to

determine whether or not they have been hit. The figure also shows the client-server analysis appropriate

to this phase of the system’s operation.

Initial, cursory inspection, would seem to suggest that there a client-server loop has been created.

However, it can be seen that the MouseBuffer is a pure server and therefore ensures that no loop is

formed. Furthermore, the Gallery process provides a user interface capability that has some unusual

properties. Any incoming communication is always fully acted upon within the process and is not

transmitted further. Thus for its inputs the Gallery acts as a pure server. For any mouse events that it

might generate, the Gallery acts as a pure client provided any event channels are communicated by a

channel that utilises an overwriting buffer. This requirement is expounded further in the JCSP

documentation.

The operation of a TargetProcess is specified as follows. After synchronising on the goBarrier it

calculates its own random alarm time, which then forms part of an alternative that comprises the alarm

and channel communications on its mousePoints channel. This alternative is looped around until either

the alarm time occurs or the target is hit. In either case the target is no longer active. Another alternative

is then entered that comprises communications on its mousePoints channel or the timeAndHitBarrier.

Even though a target is inactive other targets may still not yet have timed out and thus mouse clicks will

still be received. The timeAndHitBarrier determines when either all the targets have been hit or they

have all timed out or some combination of these situations has occurred. It also has the effect of breaking

the connection between TargetController and MouseBufferPrompt until the next set of targets are

requestPoint receivePoint

mouseEvent

possibles hits

targetsActivated getActiveTargets

targetsFlushed
flushNextBucket

TargetFlusher

TargetManager

TargetController

Target

Process i

Target

Process j

MouseBufferPrompt

MouseBuffer

Gallery

DisplayController

BarrierManager

imageList

goBarrier

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 6

initialised. To ensure this does not cause a problem the channel pointsToTC uses an

OverWriteOldestBuffer data store.

Figure 14-5 System Running Awaiting timeAndHitBarrier

When the state of a target changes (timed out or hit) it sends a communication to the

DisplayController accordingly, which can then update the display maintained by Gallery

appropriately. TargetController receives a java.awt.Point from MouseBufferPrompt that give the

coordinates where the mouse has been clicked. The TargetController then outputs this Point value to

each of the TargetProcess in parallel using the ChannelOutputList mousePoints. Once all the targets

have either been hit or timed out the timeAndHitBarrier synchronises at which point the

TargetProcesses individually determine into which randomly chosen Bucket they are going to fall.

The system then moves on to the final phase of processing shown in Figure 14-6. The DisplayController

process contains an alternative with guards comprising the finalBarrier and the channel

targetStateToDC. Thus when it is offering the guard finalBarrier together with BarrierManager the

barrier synchronises and the system is able to progress onto another initial phase as described previously.

The only process to undertake any substantial processing in the final phase is the DisplayController

which leaves the final state of the display for a preset constant time, then sets all the targets to black,

thereby obliterating them and the waits for another preset constant time. The coding of each of the

processes now follows.

c

s

c

s

c

s

c

s

c

c

pointToTC

targetStateToDC

requestPoint receivePoint

mouseEvent

possibles hits

TargetFlusher

TargetManager

TargetController

Target

Process i

Target

Process j

MouseBufferPrompt

MouseBuffer

Gallery

DisplayController

BarrierManager

imageList

timeAndHitBarrier

mousePoints

s

s

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 7

Figure 14-6 System At Final Barrier Synchronisation

14.1 Barrier Manager

The BarrierManager, shown in Listing 14-1, simply defines as properties all the barriers in which it

participates {2-5}. By definition an AltingBarrier must be part of an alternative and thus two ALTs are

defined {7, 8} in which the particular AltingBarrier is the only guard. BarrierManager then waits to

synchronise on setUpBarrier {9}. Thereafter, the process repeatedly synchronises on the goBarrier,

timeAndHitBarrier and finalBarrier in sequence {11-13}. A Barrier synchronises using the

sync() method call, whereas synchronisation on an AltingBarrier is achieved by calling the select()

method call of the ALT that contains the barrier as a guard. In this case because the guard is the only

element in the alternative a simple call of the select() method is sufficient, the value returned is of no

importance.

pointToTC

requestPoint receivePoint

mouseEvent

possibles hits

targetsActivated getActiveTargets

targetsFlushed
flushNextBucket

TargetFlusher

TargetManager

TargetController

Target

Process i

Target

Process j

MouseBufferPrompt

MouseBuffer

Gallery

DisplayController

BarrierManager

imageList

finalBarrier

mousePoints

targetStateToDC

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 8

01 class BarrierManager implements CSProcess {

02 def AltingBarrier timeAndHitBarrier
03 def AltingBarrier finalBarrier
04 def Barrier goBarrier
05 def Barrier setUpBarrier

06 void run() {
07 def timeHitAlt = new ALT ([timeAndHitBarrier])
08 def finalAlt = new ALT ([finalBarrier])
09 setUpBarrier.sync()

10 while (true){
11 goBarrier.sync()
12 def t = timeHitAlt.select()
13 def f = finalAlt.select()
14 }
15 }
16 }

Listing 14-1 Barrier Manager

14.2 Target Controller

Listing 14-2 shows the coding of the TargetController process, which is the process that effectively

controls the operation of the complete system. The properties of the process are defined {18-24} and

these directly implement the channel and barrier structures shown in Figures 14-2 to 14-6.

Within the run method some constants used to identify guards are defined {27, 28} of an alternative

{29}. The zero’th guard of the alternative controllerAlt is the AltingBarrier timeAndHitBarrier

and as such is incorporated into an ALT like any other guard. The process then waits for all the other

enrolled processes to synchronise on setUpBarrier {30} before continuing with the unending loop {31-

52} that is the main body of the process.

The first action of the process is to send a signal {32} to the TargetManager process using the channel

getActiveTargets. This is the first part of a client-server request and response pair of communications,

the second of which is the receipt of a list of the targetIds of the activeTargets from the channel

activatedTargets {33}. The activeTargets list is then used to create {36-38} a subset of the

ChannelOutputList property sendPoint {21} in another ChannelOutputList sendList, which is used

subsequently to communicate with each of the TargetProcesses. The Boolean property active is then

defined {39} and will be used to control the subsequent operation of the process. The process now waits

to synchronise on the goBarrier {40}. Prior to the goBarrier synchronisation all the TargetProcesses

will have synchronised on the initBarrier but that is of no concern to the TargetController process.

The goBarrier is used to synchronise the operation of all the targets in the running TargetProcesses,

the BarrierManager and the DisplayController as well as TargetController. The synchronisation

enables each of these processes to run in that part of the system which allows users to move their mouse

over the active targets and to try and hit each of them, by means of a mouse click, before each target times

out. Thus the only actions that can occur are either, a mouse click occurs, or all the targets have either

been hit or timed out. The mouse click manifests itself as the input of a Point on the receivePoint

channel {46}. The value of point is then communicated, in parallel {47}, to all the members of

sendList to each of the running TargetProcesses. (A write on a ChannelOutputList causes the

writing of the method call parameter to all the channels in the list in parallel). If the barrier guard is

selected then the loop terminates as soon as all the other processes on the timeAndHitBarrier have

been selected {43}.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 9

17 class TargetController implements CSProcess {

18 def ChannelOutput getActiveTargets
19 def ChannelInput activatedTargets
20 def ChannelInput receivePoint
21 def ChannelOutputList sendPoint
22 def Barrier setUpBarrier
23 def Barrier goBarrier
24 def AltingBarrier timeAndHitBarrier
25 def int targets = 16

26 void run() {
27 def POINT = 1
28 def BARRIER = 0

29 def controllerAlt = new ALT ([timeAndHitBarrier, receivePoint])
30 setUpBarrier.sync()

31 while (true) {
32 getActiveTargets.write(1)
33 def activeTargets = activatedTargets.read()
34 def ChannelOutputList sendList = []
35 for (t in activeTargets) {
36 sendList.append(sendPoint[t])
37 }
38 def active = true
39 goBarrier.sync()

40 while (active) {
41 switch (controllerAlt.priSelect()) {
42 case BARRIER:
43 active = false
44 break
45 case POINT:
46 def point = receivePoint.read()
47 sendList.write(point)
48 break
49 }
50 }
51 }
52 }
53 }

Listing 14-2 Target Controller

14.3 Target Manager

Listing 14-3 shows the coding of the TargetManager process. Its properties are defined {55-61}. The

process does not have anything to do prior to the setUpBarrier synchronisation {63}. Its body

comprises a non-terminating loop {64-75}. Initially, it reads the signal from TargetController on its

getActiveTargets channel {66}, which causes the writing of yet a further signal to the TargetFlusher

process on the flushNextBucket channel {67}. This is also the first part of the client-server

communication pattern between TargetManager and TargetFlusher. The corresponding response is

read from the targetsFlushed channel, which is the number of TargetProcesses that have been

initialised into the variable targetsRunning {68}. The next phase {69-72} is to read from each of the

initialised TargetProcesses their identity on the targetIdFromTarget channel and append it to the

targetList {70}. This list is then written to the TargetController process {73} using the

activatedTargets channel, thereby completing the client-server interaction between TargetManager

and TargetController. Finally, the list of initialised targets is written to the DisplayController using

the channel activatedTargetsToDC {74}. These two communications allow the receiving process to

complete their initialisation prior to further operation.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 10

54 class TargetManager implements CSProcess {

55 def ChannelInput targetIdFromTarget
56 def ChannelInput getActiveTargets
57 def ChannelOutput activatedTargets
58 def ChannelOutput activatedTargetsToDC
59 def ChannelInput targetsFlushed
60 def ChannelOutput flushNextBucket
61 def Barrier setUpBarrier

62 void run() {
63 setUpBarrier.sync()

64 while (true) {
65 def targetList = []
66 getActiveTargets.read()
67 flushNextBucket.write(1)
68 def targetsRunning = targetsFlushed.read()
69 while (targetsRunning > 0) {
70 targetList << targetIdFromTarget.read()
71 targetsRunning = targetsRunning - 1
72 }
73 activatedTargets.write(targetList)
74 activatedTargetsToDC.write(targetList)
75 }
76 }
77 }

Listing 14-3 Target Manager

14.4 Target Flusher

The role of the TargetFlusher process, shown in Listing 14-4, is to manage the Buckets into which the

TargetProcesses fall. The process also completes the client-server interaction with the TargetManager

process. Its properties are defined {79-82}. Some variables are initialised {84-86} in the first part of the

run method. The main loop of the process {87-98} initially reads the signal {88} that causes it to start

the initialisation of some TargetProcesses. The number of TargetProcesses in the currentBucket is

determined by means of a call of the holding() method {89}. The next piece of coding {90-93} ensures

that the number of TargetProcesses that are flushed is greater then zero.

At this stage initBarrier can be set to the number of targetsInBucket {94} by means of a call to the

reset method. The number of targetsInBucket can now be written to the TargetManager process

{95}. Now the TargetProcesses contained in the currentBucket can be flushed {96} and therefore

start running. Finally, the value of currentBucket can be incremented subject to its value staying within

zero to the number of Buckets, nBuckets {97}.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 11

78 class TargetFlusher implements CSProcess {

79 def buckets
80 def ChannelOutput targetsFlushed
81 def ChannelInput flushNextBucket
82 def Barrier initBarrier

83 void run() {
84 def nBuckets = buckets.size()
85 def currentBucket = 0
86 def targetsInBucket = 0

87 while (true) {
88 flushNextBucket.read()
89 targetsInBucket = buckets[currentBucket].holding()
90 while (targetsInBucket == 0) {
91 currentBucket = (currentBucket + 1) % nBuckets
92 targetsInBucket = buckets[currentBucket].holding()
93 }
94 initBarrier.reset(targetsInBucket)

95 targetsFlushed.write(targetsInBucket)
96 buckets[currentBucket].flush()
97 currentBucket = (currentBucket + 1) % nBuckets
98 }
99 }
100 }

Listing 14-4 Target Flusher

14.5 Display Controller

The DisplayController process is shown in Listings 14-5 to 14-8 and manages the interaction between

the TargetProcesses and the user interface provided by the Gallery process, described in the next

section.

The TargetProcesses communicate with the DisplayController by means of the channel stateChange

{102}, which is the ‘One’ end of an Any2One channel. The channel activeTargets {103} is used to

input the list of running targets during the initial phase of a cycle. The displayList property {104}

provides the connection between this process and the ActiveCanvas contained in the Gallery process.

The channels hitsToGallery and possiblesToGallery {105, 106} are used to send values to the

ActiveLabels in the Gallery process that display the number of targets that have been hit and the total

number of targets displayed. Finally, the barriers upon which DisplayController synchronises are

defined {107-109}.

101 class DisplayController implements CSProcess {
102 def ChannelInput stateChange
103 def ChannelInput activeTargets

104 def DisplayList displayList
105 def ChannelOutput hitsToGallery
106 def ChannelOutput possiblesToGallery

107 def Barrier setUpBarrier
108 def Barrier goBarrier
109 def AltingBarrier finalBarrier

Listing 14-5 Display Controller Properties

Listing 14-6 gives the array of GraphicsCommands and list of values used to change the displayList.

These are not shown complete, but are those parts that relate to the first and last three targets identified as

0, 1 and 2 and 13, 14 and 15. The array targetGraphics is used to initially create the displayList.

Each of the elements of the list targetColour comprises the colour of the target and the element of

targetGraphics that has to be changed in order to display the target. The first two elements of

targetGraphics {113,114} have the effect of completely ‘blacking’ out the display canvas prior to its

repainting within the Canvas thread.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 12

110 void run() {
111
112 def GraphicsCommand [] targetGraphics = new GraphicsCommand [34]
113 targetGraphics[0] = new GraphicsCommand.SetColor (Color.BLACK)
114 targetGraphics[1] = new GraphicsCommand.FillRect (0, 0, 450, 450)
115 targetGraphics[2] = new GraphicsCommand.SetColor (Color.BLACK)
116 targetGraphics[3] = new GraphicsCommand.FillRect (10, 10, 100, 100)
117 targetGraphics[4] = new GraphicsCommand.SetColor (Color.BLACK)
118 targetGraphics[5] = new GraphicsCommand.FillRect (120, 10, 100, 100)
119 targetGraphics[6] = new GraphicsCommand.SetColor (Color.BLACK)
120 targetGraphics[7] = new GraphicsCommand.FillRect (230, 10, 100, 100)
121 …
122 targetGraphics[27] = new GraphicsCommand.FillRect (10, 340, 100, 100)
123 targetGraphics[28] = new GraphicsCommand.SetColor (Color.BLACK)
124 targetGraphics[29] = new GraphicsCommand.FillRect (120, 340, 100, 100)
125 targetGraphics[30] = new GraphicsCommand.SetColor (Color.BLACK)
126 targetGraphics[31] = new GraphicsCommand.FillRect (230, 340, 100, 100)
127 targetGraphics[32] = new GraphicsCommand.SetColor (Color.BLACK)
128 targetGraphics[33] = new GraphicsCommand.FillRect (340, 340, 100, 100)
129
130 def targetColour = [
131 [new GraphicsCommand.SetColor (Color.RED), 2],
132 [new GraphicsCommand.SetColor (Color.GREEN), 4],
133 [new GraphicsCommand.SetColor (Color.YELLOW), 6],
134 …
135 [new GraphicsCommand.SetColor (Color.CYAN), 28],
136 [new GraphicsCommand.SetColor (Color.MAGENTA), 30],
137 [new GraphicsCommand.SetColor (Color.ORANGE), 32]]

Listing 14-6 Graphics definitions

The run method has some further properties that are shown in Listing 14-7, which include the constants

{138, 139} used to identify the selected alternative defined as controllerAlt {142}. The constants

{143-145} define the GraphicsCommand that can be used to colour a square as indicated by their name.

Finally, variables that tally the number of hits and possible hits are defined {146,147} together with a

timer {148} that is used to control the time the display stays static at the end of a cycle.

138 def BARRIER = 1
139 def CHANGE = 0
140 def TIMED_OUT = 0
141 def HIT = 1
142 def controllerAlt = new ALT ([stateChange,finalBarrier])

143 def whiteSquare = new GraphicsCommand.SetColor(Color.WHITE)
144 def blackSquare = new GraphicsCommand.SetColor(Color.BLACK)
145 def graySquare = new GraphicsCommand.SetColor(Color.GRAY)

146 def totalHits = 0
147 def possibleTargets = 0
148 def timer = new CSTimer()

Listing 14-7 Other Run Method Properties

The body of the run method is shown in Listing 14-8. Prior to the setUpBarrier synchronisation {152}

the displayList is initialised by a call to the set method {149} and the initial, zero, values of

totalHits and possibleHits are written to the Gallery {150, 151}.

The never ending loop of the run method is then entered {153-187}, which comprises some initialisation

prior to the goBarrier synchronisation {154-160} followed by the active part of the cycle {162-181}

until the finalBarrier is selected.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 13

149 displayList.set (targetGraphics)
150 hitsToGallery.write (" " + totalHits)
151 possiblesToGallery.write (" " + possibleTargets)
152 setUpBarrier.sync()

153 while (true) {
154 def active = true
155 def runningTargets = activeTargets.read() // a list of target Ids
156 possibleTargets = possibleTargets + runningTargets.size
157 possiblesToGallery.write (" " + possibleTargets)
158 for (t in runningTargets) {
159 displayList.change (targetColour[t][0], targetColour[t][1])
160 }
161 goBarrier.sync()

162 while (active) {
163 switch (controllerAlt.priSelect()) {
164 case CHANGE:
165 def alter = stateChange.read() // [tId, state]
166 switch (alter [1]) {
167 case HIT:
168 displayList.change(whiteSquare, targetColour[alter [0]][1])
169 totalHits = totalHits + 1
170 hitsToGallery.write (" " + totalHits)
171 break
172 case TIMED_OUT:
173 displayList.change(graySquare, targetColour[alter [0]][1])
174 break
175 }
176 break
177 case BARRIER:
178 active = false
179 break
180 }
181 }
182 timer.sleep(1500)
183 for (tId in runningTargets) {
184 displayList.change (blackSquare, targetColour[tId][1])
185 }
186 timer.sleep (500)
187 }
188 }
189 }

Listing 14-8 Run Method Definition

The process DisplayController is initialised by reading the identities of the running targets into the list

runningTargets from TargetManager using the channel activeTargets {155}. The size of this list is

then used to update the total number of possible targets in the Gallery {156-157}. The members of the

list are then used to change the displayList, which cause the targets to appear in the Gallery {158-

160}. The process then synchronises on the goBarrier {161}.

The process remains active {162} until the finalBarrier is selected {177-179}. It should be noted

that the order of the guards in controllerAlt is important, with priority given to inputs from the

TargetProcesses, so that all changes to the targets are completed before the finalBarrier is selected.

While the process is active, communications from the running TargetProcesses are read from the

channel stateChange {165} which are used to modify the state of the targets in the Gallery by

changing the displayList. The input from a TargetProcess is in the form of a list comprising the

identity of the target and the state to which it should be changed. Two state changes are possible

indicated by HIT, when the target’s image is changed to white {168} and the number of targets hit is also

updated {169-170} and TIMED_OUT when the square is coloured grey {173}.

Once the finalBarrier has been selected {163, 178} the process sleeps for 1.5 seconds {182} to

allow the user to determine the final state of that cycle. The running targets, which are now all coloured

either white or grey are returned to the colour black {183-185}. The process sleeps for a further 0.5

seconds {186}. It then resumes the main loop of the process, which is initiated by reading the identities of

the targets that have been flushed from the next Bucket.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 14

14.6 Gallery

The Gallery process shown in Listing 14-9 is similar to other user interface processes that have been

discussed previously. The only aspect of particular note is that a mouse event channel is added to the

ActiveCanvas {217}. There is no need for the programmer to add anything further in terms of listener of

event handling methods. Any mouse event is communicated on the mouseEvent channel to the

MouseBuffer process.

190 class Gallery implements CSProcess{
191 def ActiveCanvas targetCanvas
192 def ChannelInput hitsFromGallery
193 def ChannelInput possiblesFromGallery
194 def ChannelOutput mouseEvent
195 def canvasSize = 450

196 void run() {
197 def root = new ActiveClosingFrame ("Hand-Eye Co-ordination Test")
198 def mainFrame = root.getActiveFrame()
199 def m1 = new Label ("You Have Hit")
200 def m2 = new Label ("Out Of")
201 def hitLabel = new ActiveLabel (hitsFromGallery)
202 def possLabel = new ActiveLabel (possiblesFromGallery)
203 m1.setAlignment(Label.CENTER)
204 m2.setAlignment(Label.CENTER)
205 hitLabel.setAlignment(Label.CENTER)
206 possLabel.setAlignment(Label.CENTER)
207 m1.setFont(new Font("sans-serif", Font.BOLD, 14))
208 m2.setFont(new Font("sans-serif", Font.BOLD, 14))
209 hitLabel.setFont(new Font("sans-serif", Font.BOLD, 20))
210 possLabel.setFont(new Font("sans-serif", Font.BOLD, 20))
211 def message = new Container()
212 message.setLayout (new GridLayout (1, 4))
213 message.add (m1)
214 message.add (hitLabel)
215 message.add (m2)
216 message.add (possLabel)
217 targetCanvas.addMouseEventChannel (mouseEvent)
218 mainFrame.setLayout(new BorderLayout())
219 targetCanvas.setSize (canvasSize, canvasSize)
220 mainFrame.add (targetCanvas, BorderLayout.CENTER)
221 mainFrame.add (message, BorderLayout.SOUTH)
222 mainFrame.pack()
223 mainFrame.setVisible (true)
224 def network = [root, targetCanvas, hitLabel, possLabel]
225 new PAR (network).run()
226 }
227 }

Listing 14-9 Gallery Process

14.7 Mouse Buffer

The MouseBuffer, shown in Listing 14-10 process reads mouse events on its mouseEvent channel

{248}. Only when the event is a MOUSE_PRESSED event does it store the location of the click {251} in the

variable point. At this stage it modifies {250} the pre-condition on the process’ alternative,

mouseBufferAlt so as to be able to accept requests for a point {243}, which can then be transferred to

the MouseBufferPrompt process {244}, after which the pre-condition is again modified {245} so as not

to accept further prompt requests until another mouse click point has been received. This mechanism

was used previously in the Queue and Event Handling System and is an idiom or pattern used to

manage requests for external non-deterministic events. In this case we note that the mouseEvent channel

is always available to read events and thus does not block the Gallery process with its implicit threads

that are used to implement events and a canvas. This is further demonstrated by the mouseEvent channel

having a data store associated with it that enables the overwriting of the oldest member of the associated

buffer (see 16.10).

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 15

228 class MouseBuffer implements CSProcess{
229 def ChannelInput mouseEvent
230 def ChannelInput getClick
231 def ChannelOutput sendPoint

232 void run() {
233 def mouseBufferAlt = new ALT ([getClick, mouseEvent])
234 def preCon = new boolean [2]
235 def GET = 0
236 def EVENT = 1
237 preCon[EVENT]= true
238 preCon[GET] = false
239 def point

240 while (true) {
241 switch (mouseBufferAlt. select (preCon)) {
242 case GET:
243 getClick.read()
244 sendPoint.write(point)
245 preCon[GET] = false
246 break
247 case EVENT:
248 def mEvent = mouseEvent.read()
249 if (mEvent.getID() == MouseEvent.MOUSE_PRESSED) {
250 preCon[GET] = true
251 point = mEvent.getPoint()
252 }
253 break
254 }
255 }
256 }
257 }

Listing 14-10 Mouse Buffer Process

14.8 Mouse Buffer Prompt

The MouseBufferPrompt process shown in Listing 14-11, simply writes a request to the getPoint

channel {266} and then waits to read a point on the receivePoint channel {267} which it then writes

to the TargetController process on the returnPoint channel {268}. The combination of

MouseBufferPrompt and MouseBuffer ensures that the MouseBuffer process is a pure server in a client-

server analysis and also has the effect of decoupling the generation of mouse events in the Gallery from

the process in which they are consumed, TargetController. Furthermore, any delay in reading a point

by the TargetController does not cause a delay that might cause the blocking of the implicit event

handling thread of Gallery.

258 class MouseBufferPrompt implements CSProcess{
259 def ChannelOutput returnPoint
260 def ChannelOutput getPoint
261 def ChannelInput receivePoint
262 def Barrier setUpBarrier

263 void run () {
264 setUpBarrier.sync()

265 while (true) {
266 getPoint.write(1)
267 def point = receivePoint.read()
268 returnPoint.write(point)
269 }
270 }
271 }

Listing 14-11 Mouse Buffer Prompt Process

14.9 Target Process

The TargetProcess is shown in Listings 14-12 to 14-14. The channel targetRunning {273} is used by

TargetProcess to inform the TargetManager process that it has been flushed from a Bucket and has

been made active. The channel stateToDC {274} is used to inform the DisplayController of any

change in state of this target that is, either hit or timed-out. The channel mousePoint {275} is used to

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 16

input the java.awtPoint at which the mouse has been clicked. The process is a member of the setUp,

init, go and timeAndHit barriers {276-279}. It also requires access to the array of buckets {280}. The

property targetId {281} is a unique integer identifying the instance of TargetProcess and the values x

{282} and y {283} are the pixel co-ordinates of the upper left corner of the target in the display window.

The property delay {284} specifies the minimum period for which the target will be displayed before it

times out. The target will be visible for a random time between delay and twice delay. The method

within {285-293} determines if a java.awt.Point p is within the target area. All targets are square

with a side of 100 pixels.

272 class TargetProcess implements CSProcess {
273 def ChannelOutput targetRunning
274 def ChannelOutput stateToDC
275 def ChannelInput mousePoint
276 def Barrier setUpBarrier
277 def Barrier initBarrier
278 def Barrier goBarrier
279 def AltingBarrier timeAndHitBarrier
280 def buckets
281 def int targetId
282 def int x
283 def int y
284 def delay = 800

285 def boolean within (Point p, int x, int y) {
286 def maxX = x + 100
287 def maxY = y + 100
288 if (p.x < x) return false
289 if (p.y < y) return false
290 if (p.x > maxX) return false
291 if (p.y > maxY) return false
292 return true
293 }

Listing 14-12 The Properties and Within Method of target process

The first part of the run method is executed during the setup phase of the system and is only
executed once, Listing 14-13. A Random number generator rng {295} is defined and then used
to specify the initial bucket, bucketId {296, 297} into which the TargetProcess will
subsequently fall. Initially all TargetProcesses will fall into a bucket in the first half
of the array of buckets. A timer and some constants are then defined {298-303}.

Two alternatives are then defined. The alternative preTimeOutAlt {304} is used prior to the
TargetProcess being timed out and postTimeOutAlt {305} is used once a time out has occurred
or the target has been hit. The latter alternative includes the AltingBarrier
timeAndHitBarrier. The operation of such an AltingBarrier is straightforward. It must
appear as a guard in an alternative. Whenever any select method on the alternative is called
a check is made to determine whether all the other members of the AltingBarrier have also
requested and are waiting on such a select. If they have then the AltingBarrier as a whole
can be selected. If one of the members of an AltingBarrier accepts another guard in such an
alternative then the AltingBarrier cannot be selected. Thus it is possible for a process to
offer an AltingBarrier guard and then withdraw from that guard if the dynamics of the system
cause that to happen.

The TargetProcess now resigns from timeAndHitBarrier {306}, which at first sight may seem
perverse. All TargetProcess are initially enrolled on this barrier. However we only want
running targets to be counted as part of the barrier so we must first resign from the barrier
and then enroll only when the TargetProcess is executed.

The mechanism of enroll and resign can be applied to all types of barrier. A process that
enrolls on a barrier can now call the sync method (Barrier) or be a guard in an alternative
and thus can be selected (AltingBarrier). Similarly a process can resign which means that
the process is no longer part of the barrier. In the case of a Barrier resignation also
implies that if this is the last process to synchronise on the Barrier then this is
equivalent to all the processes having synchronised. A process cannot resign if it is not
enrolled. In the case of AltingBarriers this enrolment and resignation has to be
undertaken with care as no process can be running and selecting the barrier onto which it is
intended to either enrol or resign another process from. The associated documentation for
JCSP specifies this requirement more fully.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 17

The TargetProcesses now synchronise on the setUpBarrier {307} and when this is achieved
they then fallInto the bucket with subscript bucketId {308}. This has the effect of
stopping the process. It will only be rescheduled when the TargetFlusher process causes the
bucket into which the process has fallen is flushed {96}.

294 void run() {
295 def rng = new Random()
296 def int range = buckets.size() / 2
297 def bucketId = rng.nextInt(range)
298 def timer = new CSTimer()
299 def POINT= 1
300 def TIMER = 0
301 def BARRIER = 0
302 def TIMED_OUT = 0
303 def HIT = 1

304 def preTimeOutAlt = new ALT ([timer, mousePoint])
305 def postTimeOutAlt = new ALT ([timeAndHitBarrier, mousePoint])

306 timeAndHitBarrier.resign()
307 setUpBarrier.sync()
308 buckets[bucketId].fallInto()

Listing 14-13 Target process: The Setup Phase of Run

The remainder of the run method, Listing 14-14, only gets executed when the process has been flushed.

It comprises a never ending loop {309-349}, which as its final statement {348} causes itself to fall into

another bucket, prior to returning to the start of the loop. The loop itself has three phases comprising the

phases managed by initBarrier and then that managed by the goBarrier before finally running until

either the target is hit or times out which is managed by the timeAndHitBarrier.

In the initial phase, the process enrolls on the timeAndHitBarrier {310} and also the goBarrier

{311}. Enrolling on the timeAndHitBarrier causes no problem because at this stage no process can be

selecting a guard from an alternative in which timeAndHitBarrier is involved. Similarly, enrolling on

the goBarrier is an operation that can be undertaken dynamically because it is a Barrier. The running

process now writes its unique identity, targetId to its targetRunning channel {312}. This

communication means that the TargetManager now can determine {69-72} which targets are active. It

then synchronises on the initBarrier {313}. The number of running TargetProcesses associated with

the initBarrier is specified by TargetFlusher {94} at a time when none of these processes can be

running because they have yet to be flushed. Only the running TargetProcesses are allowed to access

the initBarrier and thus once the initBarrier has synchronised we know that all the

TargetProcesses are in the same state and that any dependent processes such as DisplayController

will be able to complete any further initialisation prior to the goBarrier synchronisation. The Boolean

running is initialised, which will be used subsequently to control the operation of the process. Similarly,

the variable resultList is initialised {315} and will be used to indicate the change of state that will

occur in the target. The process can now synchronise on the goBarrier by resigning from it {316}.

The only permanent members of the goBarrier are BarrierManager, TargetController and

DisplayController, all of which simply call the method sync on the barrier {11, 39 and 161}. The

goBarrier is augmented by the active TargetProcesses to ensure that all the processes are in a state that

will be suitable for the whole system to become active.

Once the process has synchronised on the goBarrier it determines the time for which the target will be

displayed and sets the timer alarm {317} which is a guard in the preTimeOutAlt (319}. Prior to the

alarm occurring only two things can occur, either the TIMER alarm does happen {320} or a mouse click

POINT is received {325}. In the former case, the value TIMED_OUT can be appended to the resultList

{322} and this list can be written to the DisplayController using the channel stateToDC {323}.

Otherwise, an input can be processed {326} which, if it is within the target area {327} causes the value

HIT to be appended to the resultList {329} and as before written to the DisplayController process

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 18

{330}. If the point is not within the target then the loop repeats until one of the above cases occurs.

Once this happens the value of running is set false {321, 328} and the loop {318-334} terminates.

The process now has take account of the case where other targets are still running; awaiting a time out or

a hit, and so mouse clicks and their associated point data will still be received by the TargetProcess.

Such point data can be ignored {342-344} and only when all the TargetProcesses are selecting the

timeAndHitBarrier, together with TargetController and BarrierManager processes can the

awaiting loop {335-346} terminate. When this occurs the process resigns from the

timeAndHitBarrier and causes the loop to exit {338-341}.

The TargetProcess can now prepare itself for falling into another bucket by calculating {347} into which

bucket it will fall and then calling the fallInto method {348}. The chosen bucket is at least two further

on than the current bucket which means that it cannot be flushed in the next iteration of TargetFlusher,

unless the next bucket is empty.

309 while (true) {
310 timeAndHitBarrier.enroll()
311 goBarrier.enroll()
312 targetRunning.write(targetId)
313 initBarrier.sync()

314 def running = true
315 def resultList = [targetId]
316 goBarrier.resign()

317 timer.setAlarm(timer.read() + delay + rng.nextInt(delay))
318 while (running) {
319 switch (preTimeOutAlt.priSelect()) {
320 case TIMER:
321 running = false
322 resultList << TIMED_OUT
323 stateToDC.write(resultList)
324 break
325 case POINT:
326 def point = mousePoint.read()
327 if (within(point, x, y)) {
328 running = false
329 resultList << HIT
330 stateToDC.write(resultList)
331 }
332 break
333 }
334 }
335 def awaiting = true
336 while (awaiting) {
337 switch (postTimeOutAlt.priSelect()) {
338 case BARRIER:
339 awaiting = false
340 timeAndHitBarrier.resign()
341 break
342 case POINT:
343 mousePoint.read()
344 break
345 }
346 }
347 bucketId = (bucketId + 2 + rng.nextInt(8)) % buckets.size()
348 buckets[bucketId].fallInto()
349 }
350 }
351 }

Listing 14-14 Target Process: The Active Phase of the Run Method

14.10 Running the System

Listing 14-15 gives the declarations of the channels, barriers and other data required to create the network

according to the process network diagrams given in Figures 14-2 to 14-6 and as such are not particularly

noteworthy apart from those described below. The Barriers are defined with the required number of

processes. Thus setUpBarrier {357} is defined with the number of targets plus five for the other

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 19

processes that use this barrier, see Figure 14-2. The initBarrier {358} is defined with no members

because only the running TargetProcesses use this barrier and the number is reset explicitly in

TargetFlusher {94}, see Figure 14-3. Finally, the goBarrier {359} is defined has having three

members, which are the permanently attached processes as shown in Figure 14-4.

The AltingBarriers are defined as an array, with sufficient members such that every process that access

them may have a so-called front-end. The finalBarrier {361} only requires two front-ends because

only BarrierManager and DisplayController participate in this barrier. The barrier

timeAndHitBarrier {360} requires a front-end for each TargetProcess, the TargetController and

BarrierManager. Each process participating in an AltingBarrier needs to be allocated its own front-

end so that it can access the barrier during an alternative select method call. Recall that as a

TargetProcess becomes active it specifically enrolls on the timeAndHitBarrier thereby activating its

membership of the barrier and when its turn is complete it resigns from it. Thus the number of

processes that are members of the timeAndHitBarrier is determined dynamically at run time. The

Buckets are defined by means of a create method call {362} and this could be any sensible number to

provide a wide variety of target initiations per cycle, too many buckets and we would get too few running

targets to make the challenge interesting!

The mouseEvent channel {363} must be defined with a data store of type OverWriteOldestBuffer so

that the event handling thread associated with the user interface does not block; see the JCSP

documentation for ActiveCanvas. Similarly the pointToTC channel also uses a one place

OverWriteOldestBuffer {366} so that if mouse clicks are received too quickly the system does not

block. Given the normal performance of a PC this is very unlikely to occur as the user time to move the

mouse to another target is relatively long.

The channels that connect TargetController to the TargetProcesses are defined as any array,

mousePointToTP {376}, the input end of which is passed directly to the TargetProcess {385}. The

output ends are formed into a ChannelOutputList, mousePoints {377}, so that they can be written to in

parallel by a write method call {47} by TargetController.

The DisplayList and ActiveCanvas components are defined {378-380} prior to being passed as

properties of the required processes.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 20

352 def targets = 16
353 def targetOrigins = [[10, 10],[120, 10],[230, 10],[340, 10],
354 [10, 120],[120, 120],[230, 120],[340, 120],
355 [10, 230],[120, 230],[230, 230],[340, 230],
356 [10, 340],[120, 340],[230, 340],[340, 340]]

357 def setUpBarrier = new Barrier(targets + 5)
358 def initBarrier = new Barrier()
359 def goBarrier= new Barrier(3)

360 AltingBarrier [] timeAndHitBarrier = AltingBarrier.create(targets+2)
361 AltingBarrier [] finalBarrier = AltingBarrier.create(2)

362 def buckets = Bucket.create(targets)

363 def mouseEvent = Channel.createOne2One (new OverWriteOldestBuffer(20))
364 def requestPoint = Channel.createOne2One()
365 def receivePoint = Channel.createOne2One()
366 def pointToTC = Channel.createOne2One(new OverWriteOldestBuffer(1))

367 def targetsFlushed = Channel.createOne2One()
368 def flushNextBucket = Channel.createOne2One()

369 def targetsActivated = Channel.createOne2One()
370 def targetsActivatedToDC = Channel.createOne2One()
371 def getActiveTargets = Channel.createOne2One()

372 def hitsToGallery = Channel.createOne2One()
373 def possiblesToGallery = Channel.createOne2One()

374 def targetIdToManager = Channel.createAny2One()
375 def targetStateToDC = Channel.createAny2One()

376 One2OneChannel[] mousePointToTP = Channel.createOne2One(targets)
377 def mousePoints = new ChannelOutputList (mousePointToTP)

378 def imageList = new DisplayList()
379 def targetCanvas = new ActiveCanvas ()
380 targetCanvas.setPaintable (imageList)

Listing 14-15 Running the System Property Definitions

Listing 14-16 shows the definition of the TargetProcesses and also of BarrierManager. The other

processes can be found on the accompanying software because they are very similar to the definition of

processes in other systems. It is a matter of tying together the property definition in the process and the

defined variable in the script that causes the system to execute. The barriers are straightforward but the

allocation of a timeAndHitBarrier requires that a specific front-end is allocated to each TargetProcess

{389} and also to BarrierManager {398}. The origin co-ordinates of each TargetProcess {392, 393}

for the associated display is obtained from the list targetOrigins {353-356}.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 21

381 def targetList = (0 ..< targets).collect { i ->
382 return new TargetProcess (
383 targetRunning: targetIdToManager.out(),
384 stateToDC: targetStateToDC.out(),
385 mousePoint: mousePointToTP[i].in(),
386 setUpBarrier: setUpBarrier,
387 initBarrier: initBarrier,
388 goBarrier: goBarrier,
389 timeAndHitBarrier: timeAndHitBarrier[i],
390 buckets: buckets,
391 targetId: i,
392 x: targetOrigins[i][0],
393 y: targetOrigins[i][1],
394 delay: 2500
395)
396 }

397 def barrierManager = new BarrierManager (
398 timeAndHitBarrier: timeAndHitBarrier[targets],
399 finalBarrier: finalBarrier[0] ,
400 goBarrier: goBarrier,
401 setUpBarrier: setUpBarrier
402)

Listing 14-16 Decalring the TargetProcesses and BarrierManager

14.11 Summary

This chapter has introduced the concepts of buckets and barriers as a means of providing synchronisation

between processes that are executing on a single processor within a single JVM. It has been shown how

an AltingBarrier can be used to manage highly dynamic situations and to provide a high-level control

mechanism to manage complex interactions. A description of the implementation mechanism underlying

AltingBarrier is to be found in [Welch CPA 2007] and a different use of AltingBarrier using a

syntactically different but conceptually identical formulation is to be found in [Ritson CPA 2007].

