
Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 1

11 Graphical User Interfaces: Brownian Motion
Previously, in Chapter 3, a simple user interface was developed that enabled easier interpretation of the

output from networks of groovyPlugAndPlay processes. This chapter explores more complex user

interfaces in conjunction with a relatively simple graphical application based upon particle movement.

The JCSP package contains an active implementation of the java AWT (Abstract Windows Toolkit). The

term active is here used to mean that each AWT component, for example, button, scrollbar and canvas,

has been wrapped in a process so that component events and configuration are undertaken by channel

communications. This means that the active components can be connected to any process. Furthermore,

the programmer does not have to write any event handling or listener methods as these are contained

within the active process wrapper. The active components inherit capabilities from the basic AWT

components, thus the methods and fields associated with the component can be reused and active and

ordinary non-active components can be used in the same interface.

The primary benefit of the active AWT components is that processes that access the user interface can

utilise their non-deterministic capabilities, thereby reflecting the unpredictable behaviour of user

interfaces. The user interface has no knowledge of when, for example, a button is going to be pressed and

thus either a channel communication or an alternative provides a simple method for capturing that non-

deterministic behaviour.

11.1 Active AWT Widgets

The fundamental process diagram for an active widget is shown in Figure 13-1. A widget is any

component available in the java.awt package for which an active version has been constructed. Some

active widgets have been constructed that simplify the construction of user interfaces. Specific widgets

may have more or less channels depending upon the functionality of the widget. All widgets have a

configure input channel which enables the configuration of the widget at run-time. In most cases the

configuration of a new widget can be defined when it is constructed, unless of course the content of the

user interface is to be altered by changing the configuration of one of its widgets. For example, when a

button has its associated text changed to reflect the state of the user interface. Each of the active

component output channels produces data values that are related to the underlying AWT specification of

that event and is specified in the java.awt documentation. The role of the configuration and event

channels is specified in the org.jcsp.awt documentation and depends upon the specific component. For

example, if the event arises from the pressing of an ActiveButton then the message communicated is the

text string associated with the button. Similarly, a configuration channel message could be a text string

that is to replace the current text associated with the button.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 2

Figure 11-1 Generic Active Widget Process Diagram

11.2 The Particle System – Brownian Motion

A particle motion system
1
 comprises a number of particles that move around at random. Their position is

shown on a Canvas. Using Java threads and a Canvas results in a somewhat cumbersome representation

of the solution because a Canvas executes in its own thread of control, which has the effect of distributing

the particle control, random movement and the graphical representation throughout the classes that make

up the solution.

In the parallel solution that follows these drawbacks are eliminated and the fact that a Canvas has to

execute in its own thread of control is hidden from the programmer. Furthermore in this solution we shall

introduce some additional capabilities. The particles will bounce off the side of the bounding Canvas.

The user will be given control of the application with a button that allows them to initially start the

system and then subsequently to pause and resume its operation. In addition two buttons are provided

which modify the ‘temperature’ of the system. The higher the temperature the greater the random

movement exhibited by the particles. The particles do not bounce off each other and that is left as an

additional exercise for the interested reader.

The structure of the Brownian motion system is shown in Figure 13-2. A number of particles (Particle

0 to n) are connected to the ParticleInterface. This utilises a new form of channel called Any2One.

An Any2One channel enables the connection of any number of writer processes to a single reader process.

The point-to-point nature of channel communication is, however, still maintained because only one

communication can proceed at a time. Communications on an Any2One are such that communication

from one writer to the single reader is completed before the next writer can commence its communication.

The converse is true of One2Any channels. The JCSP also includes Any2Any channels where yet again

once a communication has started it behaves like a one-to-one communication.

1
 Doug Lea, Concurrent Programming in Java, Second Edition, Chapter 1,

Active

Widget
configure

event

widget event

focus event

key event

mouse event

mouse motion event

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 3

Figure 11-2 Brownian Motion Process Network

Particles are not aware of their position relative to the sides of the bounding Canvas and thus the

particle may move to a position that is outwith the bounding Canvas. In this case the particle’s position is

updated within the ParticleInterface. The updated position together with any change of temperature

is returned to the Particle using the update channel. The update channel is a One2Any channel that

permits one writer to write to any number of readers. This is not a broadcast communication because the

writer can only write to one of the reader processes at any one time. Furthermore, once one of the many

reader processes has committed to a communication no other reader will be able to start a communication

until the writer has written to that reader process.

The ParticleManager is responsible for receiving inputs from the Particle processes; modifying their

position, should the indicated position lie outside the bounding canvas; and then causing the display of

the particle’s position on the canvas. The ParticleManager is also responsible for dealing with button

events from the UserInterface and configuring the buttons and labels within the UserInterface. Data

is passed between the Particle processes and the ParticleManager by means of a data object that

contains both positional information as well as any change to the temperature.

The UserInterface contains the display canvas, together with a button that is used to initially start and

then subsequently used to pause and restart the system. Two further buttons are provided that are used to

increase or decrease the temperature together with a Label that shows the current temperature value with

an indication of whether the last change was up or down. The channels used between the

ParticleManager and the UserInterface will be described more fully in a later section.

11.2.1 The Position Data Object

The Position data object, see Listing 13-1, is used to communicate data between the Particles and the

ParticleInterface. Position implements the interface JCSPCopy {1}, which is defined within the

org.jcsp.groovy package. It should be recalled that objects are passed between processes running on

the same machine by means of an object reference. In some situations this could lead to the creation of a

large number of newly created short-lived objects, which could lead to the calling of the automatic Java

garbage collector. The calling of the garbage collector during a graphical display would interfere with the

presentation. The abstract interface JCSPCopy defines a method called copy(), which can be used to

generate a deep copy of an object.

c c

connect

update

Particle 0 Particle n

ParticleManager

UserInterface

dList tempConfig uiEvent

s

…

pauseConfig

ParticleInterface

s

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 4

01 class Position implements JCSPCopy {

02 def int id
03 def int lx
04 def int ly
05 def int px
06 def int py
07 def int temperature

08 def copy() {
09 def p = new Position (id: this.id,
10 lx: this.lx, ly: this.ly,
11 px: this.px, py: this.py,
12 temperature : this.temperature)
13 return p
14 }

15 def String toString () {
16 def s = "[Position-> " + id + ", " + lx + ", " + ly
17 s = s + ", " + px + ", " + py
18 s = s + ", " + temperature + "]"
19 return s
20 }

21 }

Listing 11-1 The Position Data Object

Lines {2-7} define the properties of Position. The property id is the number of the Particle. The

properties lx and ly are the newly calculated [x, y] position co-ordinates of the Particle. These co-

ordinates may lie outside the display area. The properties px and py are the co-ordinates of the previous

position of the particle. The property temperature maintains the current value of the temperature within

the system. All the properties, apart from id can be altered within the ParticleInterface.

Lines {8-14} define the method copy required for the implementation of the interface JCSPCopy. For

completeness, a toString method is defined {15-20} that can be used to output the contents of a

Position object.

11.2.2 The Particle Process

The definition of the Particle process is shown in Listing 13-2. A Particle has two channels one

{23}, sendPosition, to output its Position to, and the other {24}, getPosition, to receive updated

Positions from the ParticleInterface. It should be noted that even though these channels will

eventually be implemented as Any2One and One2Any channels as far as the process is concerned these are

just a ChannelOutput and ChannelInput respectively. The properties x {25} and y {26} hold the initial

position of the particle. A default display are of 200 pixels is presumed and thus all particles start their

movement from the centre of that area. The position of the particles will be recalculated after the interval

specified by delay {27}, which is initially set to 200 milliseconds. Each Particle is given a unique

identification id {28}. The initial temperature of the system is set at 25 {29} and can range from 10 to

50.

The run method defines a CSTimer called timer {31} and uses the Java provided random number

generator mechanism, Random () {32}. The variable p holds the Position of the particle and is

constructed using the initial values held within the properties passed to the process {33}.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 5

22 class Particle implements CSProcess {

23 def ChannelOutput sendPosition
24 def ChannelInput getPosition
25 def int x = 100
26 def int y = 100
27 def long delay = 200
28 def int id
29 def int temperature = 25

30 void run() {

31 def timer = new CSTimer()
32 def rng = new Random()
33 def p = new Position (id: id, px: x, py: y, temperature: temperature)

34 while (true) {
35 p.lx = p.px + rng.nextInt(p.temperature) - (p.temperature / 2)
36 p.ly = p.py + rng.nextInt(p.temperature) - (p.temperature / 2)
37 p.ly = p.py + rng.nextInt(p.temperature * 2) - (p.temperature)
38 sendPosition.write (p)
39 p = ((Position)getPosition.read()).copy()
40 timer.sleep (delay)
41 }
42 }
43 }

Listing 11-2 The Particle Process

The main loop of the process {35-39} requires the calculation of the new position of the particle lx and

ly that are stored in the variable object p {35, 36}. The calculation ensures that the particle moves in a

space that surrounds the current location [px, py] by a square with a side of size temperature. The

position p is then written to the ParticleInterface {38}. This is a write operation that is implemented

on a shared Any2One channel and thus the process will have to wait until any other outstanding

communications have completed. An Any2One channel is essentially fair in that the communications are

placed in a queue of such communications.

The Particle process behaves like a client to the ParticleInterface’s server. As soon as it has

written its position to the ParticleInterface it reads the updated position information {39} from the

getPosition channel. The getPosition channel is implemented by means of a One2Any channel and

thus this client – server interaction has to be carefully considered. When the sendPosition.write(p)

communication is completed only this Particle process can be in that state because only one

communication is permitted on an Any2One channel. Hence the only process that will be in a position to

undertake a read on the getPosition channel is this process. Hence we are assured that a Particle

process that writes is position to ParticleInterface will be the one to receive its response, even though

we are using shared Any2One and One2Any channels.

Finally, the Particle process sleeps for the delay period {40} after which the loop is repeated until the user

stops the application through the user interface. The user interface will cause the Particle processes to

stop even though they are implemented using a non-terminating while-loop.

11.2.3 The Particle Interface Process

This process, shown in Listing 13-3 is typical of any application that uses a graphical user interface in that

it comprises a process that undertakes both the interaction with the user interface and the rest of the

system and the a process that implements the user interface itself. These two processes are always run in

parallel using communication channels to pass events and configuration information between the

processes.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 6

44 class ParticleInterface implements CSProcess {
45 def ChannelInput inChannel
46 def ChannelOutput outChannel
47 def int canvasSize = 100
48 def int particles
49 def int centre
50 def int initialTemp

51 void run() {
52 def dList = new DisplayList()
53 def particleCanvas = new ActiveCanvas()
54 particleCanvas.setPaintable (dList)
55 def tempConfig = Channel.createOne2One()
56 def pauseConfig = Channel.createOne2One()
57 def uiEvents = Channel.createAny2One(new OverWriteOldestBuffer(5))

58 def network = [new ParticleManager (fromParticles: inChannel,
59 toParticles: outChannel,
60 toUI: dList,
61 fromUIButtons: uiEvents.in(),
62 toUIPause: pauseConfig.out(),
63 toUILabel: tempConfig.out(),
64 CANVASSIZE: canvasSize,
65 PARTICLES: particles,
66 CENTRE: centre,
67 START_TEMP: initialTemp),

68 new UserInterface (particleCanvas: particleCanvas,
69 canvasSize: canvasSize,
70 tempValueConfig: tempConfig.in(),
71 pauseButtonConfig: pauseConfig.in(),
72 buttonEvent: uiEvents.out())]

73 new PAR (network).run()
74 }
75 }

Listing 11-3 The ParticleInterface Process

The channels inChannel {45} and outChannel {46} are used to connect this process to the Particle

processes. Yet again this process definition does not need to be aware of the specific implementation of

the channels actually used to connect the processes together. The property canvasSize {47} provides a

default size for the display area. Similarly, properties are defined, with default values, for the number of

particles {48}, the centre of the display area {49} and the intialtemp(erature) {50} of the system.

The variable dList {52} is of type DisplayList, defined within org.jcsp.awt. The use of dList will

be described later. It is sufficient to note, at this stage, that it is passed as a property to the

ParticleManager process {60}. An ActiveCanvas, particleCanvas is defined {53} and then a call to

its setPaintable() method is made that associates it with dList {54}. In this manner both

ParticleManager and UserInterface can access dList, the former directly as a property and the other

indirectly through particleCanvas {68}. Essentially, dList is a shared object between the processes

but the user can only modify the dList in ParticleManager directly. Therefore a DisplayList object

has to be defined before either of the processes that access it are defined.

The tempConfig channel {55} is used to update the temperature display in the interface. The

pauseConfig {56} channel is used to set the text in the START/PAUSE/RESTART button.

The uiEvents channel {57} passes button events from the UserInterface to the ParticleManager

process. It is not possible to press two buttons at the same time hence we can use an Any2One channel,

which simplifies processing within the ParticleManager process. The parameter

OverWriteOldestBuffer (5) specifies that this channel will use a buffer of 5 elements in which, should

it become full the oldest element in the buffer will be overwritten. This buffer is required because it is

essential that events on this channel are always read otherwise the underlying Java event thread may

block, which would also have the effect of stopping the rest of the user interface. The specified buffer

will always read an input, hence ensuring that the Java event thread will not block and that another

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 7

process will always be able to read the last few events, five in this case, even if the reading process is

slow.

The network {58-72} simply comprises the ParticleManager and UserInterface processes with

parameters and variables passed as parameters as required to construct the process network as shown in

Figure 3-2.

11.2.4 The ParticleManager Process

The properties of the ParticleManager process are shown in Listing 13-4. The channel connections

with Particle processes are provided by the channels fromParticles {77} and toParticles {78}.

When the system is instantiated these will be passed shared channels of type Any2One and One2Any

respectively. The constant properties {79-82} respectively contain the size of the square display area

(CANVASSIZE), number of particles (PARTICLES), the centre co-ordinate of the display area (CENTRE) and

the initial value of the system temperature (START_TEMP). The DisplayList property {83}, toUI,

provides the graphical connection between the ParticleManager and UserInterface processes. The

ChannelInput {84} fromUIButtons is the channel by which button event from the user interface are

communicated to ParticleManager. Finally, the ChannelOutputs toUILabel {85} and toUIPause

{86} provide the means by which the temperature value and the START, PAUSE and RESTART button have

their values changed.

76 class ParticleManager implements CSProcess {

77 def ChannelInput fromParticles
78 def ChannelOutput toParticles
79 def int CANVASSIZE
80 def int PARTICLES
81 def int CENTRE
82 def int START_TEMP
83 def DisplayList toUI
84 def ChannelInput fromUIButtons
85 def ChannelOutput toUILabel
86 def ChannelOutput toUIPause

Listing 11-4 ParticleManager Properties

The initialisation of the ParticleManager is shown in Listing 13-5. The variable colourList {88-90}

contains a list of java.awt.colors that is used to colour the particles once they start moving. The

variable temperature {91} is assigned the value of property START_TEMP.

The next part {95-106} initialises the variables that will be used by the DisplayList mechanism. The

variable, particleGraphics {92} used to set() a DisplayList comprises an array of

GraphicsCommands. The initial element of particleGraphics {95, 96} contains a GraphicsCommand

that clears the display area. The remainder of particleGraphics comprises two elements per particle.

The first element of which is a command to set the colour of the particle and the second will draw a circle

of that colour with a radius of 10 pixels at the position of the particle. However for initialisation, each

particle is set to the colour BLACK {98} and placed at the CENTRE {99} of the display area. This is

captured in the variable initialGraphic {97}. The nested for loops {100-105} copies the

initialGraphic into the array particleGraphics. Thus particleGraphics comprises a first

command to clear the display followed by as many pairs of GraphicsCommands as there are particles

needing to be drawn. The DisplayList, toUI is then set() to particleGraphics {106}. The manner

in which the DisplayList is manipulated will be described later.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 8

87 void run() {
88 def colourList = [Color.BLUE, Color.GREEN,
89 Color.RED, Color.MAGENTA,
90 Color.CYAN, Color.YELLOW]
91 def temperature = START_TEMP

92 GraphicsCommand [] particleGraphics =
93 new GraphicsCommand [1 + (PARTICLES * 2)]
94
95 particleGraphics[0] =
96 new GraphicsCommand.ClearRect (0, 0, CANVASSIZE, CANVASSIZE)

97 GraphicsCommand [] initialGraphic = new GraphicsCommand [2]
98 initialGraphic[0] = new GraphicsCommand.SetColor (Color.BLACK)
99 initialGraphic[1] = new GraphicsCommand.FillOval (CENTRE,CENTRE,10,10)

100 for (i in 0 ..< PARTICLES) {
101 def p = (i * 2) + 1
102 for (j in 0 ..< 2) {
103 particleGraphics [p+j] = initialGraphic[j]
104 }
105 }

106 toUI.set (particleGraphics)

107 GraphicsCommand [] positionGraphic = new GraphicsCommand [2]
108 positionGraphic =
109 [new GraphicsCommand.SetColor (Color.WHITE),
110 new GraphicsCommand.FillOval (CENTRE, CENTRE, 10, 10)
111]

112 def pmAlt = new ALT ([fromUIButtons, fromParticles])

113 def initTemp = " " + temperature + " "
114 toUILabel.write (initTemp)

115 def direction = fromUIButtons.read()
116 while (direction != "START") {
117 direction = fromUIButtons.read()
118 }
119 toUIPause.write("PAUSE")

Listing 11-5 ParticleManager Initialisation

The two element array positionGraphic {107-111} will subsequently be used to update the

DisplayList to reflect the movement of particles. It is initialised to sensible values that will be

overwritten. However it can be observed that the first element of the array contains a command to set the

colour and the second causes the drawing of a circle of that colour. The ParticleManager process

alternates over inputs from the user interface buttons, fromUIButtons and from the particles on channel

fromParticles {112}. The String initTemp is defined to hold the initial value of temperature {113}

surrounded by spaces. This String is then written to the label that displays this value using the channel

toUILabel {114}.

The variable direction reads from the channel fromUIButtons {115}. A user interface button signals a

button event by communicating the String that is currently displayed by the button. Recall that all the

user interface buttons are connected to the same channel, fromUIButtons. Only the

START/PAUSE/RESTART button has the initial value START and thus the process will wait until the button

labelled START is pressed. This behaviour is captured in the while loop {116-118}, which ignores any

other button events. Once START has been read, the button’s text value is changed to PAUSE {119} by

writing to the toUIPause channel. The operation of the system now commences and this is shown in

Listing 13-6.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 9

120 while (true) {
121 def index = pmAlt.priSelect()
122 if (index == 0) { // dealing with a button event
123 direction = fromUIButtons.read()
124 if (direction == "PAUSE") {
125 toUIPause.write("RESTART")
126 direction = fromUIButtons.read()
127 while (direction != "RESTART") {
128 direction = fromUIButtons.read()
129 }
130 toUIPause.write("PAUSE")
131 }
132 else {
133 if ((direction == "Up") && (temperature < 50)) {
134 temperature = temperature + 5
135 def s = "+" + temperature + "+"
136 toUILabel.write (s)
137 }
138 else {
139 if ((direction == "Down") && (temperature > 10)) {
140 temperature = temperature - 5
141 def s = "-" + temperature + "-"
142 toUILabel.write (s)
143 }
144 else {
145 }
146 }
147 }
148 }

Listing 11-6 ParticleManager Button Event Processing

The index of the selected alternative is obtained, with priority being given to button events {121, 122}.

If the value read from the channel fromUIButtons is PAUSE {124} then it is immediately overwritten

with RESTART {125}. The process then waits for the button event RESTART ignoring all other button

events {126-129}. Once the system has been restarted the button is overwritten with the value PAUSE

{130}.

If the value read into direction is not PAUSE then it must either be Up or Down which are the text

associated with the buttons that manipulate the temperature of the system. If the Up button is pressed

and provided the current value of temperature is less than 50 {133} then the temperature is raised by 5

{134} and the new value of temperature is written to the interface using the channel toUILabel

surrounded by + symbols {135-136}. Similarly if the Down button is pressed then the temperature is

reduced by 5 provided its current value is greater than 10 and is output surrounded by – symbols {139-

142}.

149 else { // index is 1 particle movement
150 def p = (Position) fromParticles.read()
151 if (p.lx > CANVASSIZE) { p.lx = (2 * CANVASSIZE) - p.lx }
152 if (p.ly > CANVASSIZE) { p.ly = (2 * CANVASSIZE) - p.ly }
153 if (p.lx < 0) { p.lx = 0 - p.lx }
154 if (p.ly < 0) { p.ly = 0 - p.ly }
155 positionGraphic [0] =
156 new GraphicsCommand.SetColor (colourList.getAt(p.id%6))
157 positionGraphic [1] = new GraphicsCommand.FillOval (p.lx,p.ly,10,10)
158 toUI.change (positionGraphic, 1 + (p.id * 2))
159 p.px = p.lx
160 p.py = p.ly
161 p.temperature = temperature
162 toParticles.write(p)
163 } // index test
164 } // while
165 } // run
166 }

Listing 11-7 ParticleManager Particle Movement Processing

Listing 13-7 shows the processing that deals with the movement of particles. Recall that ParticleManager

is behaving as a server process. Hence we would expect to see it read a client request {150}, undertake

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 10

some processing and then respond with the return value {162}. The Position data object is read into

the variable p from the channel fromParticles {150}. The proposed location [lx, ly] of the particle

is then assessed as to whether it still remains within the display area {151-154} and if not its position is

adjusted assuming that the reflection from the side of the display area involves not friction or elastic

compression of the particle. The value of the PositionGraphic array is then modified to reflect the

particle’s colour by taking the modulus 6 remainder of the particle’s id {156} and then setting the centre

of the circle to [lx, ly] {157}. This is then used to overwrite the data for this particle in the

DisplayList parameter using the toUI.change() method {158}.

The description of the operation of a DisplayList can now be completed. An ActiveCanvas takes the

DisplayList object as a parameter. Internally, the ActiveCanvas constructs two copies of the associated

DisplayList array of Graphics commands. These copies are used to provide a double buffering

mechanism; this however is hidden from the programmer. At a specified period the ActiveCanvas draws

the current buffer on the display, while other changes are recorded in the other copy. This mechanism is

repeated displaying the first buffer and recording changes in the second and then displaying the second

buffer while recording changes in the first copy. The DisplayList is initialised by a set method {106}.

Thereafter specific elements of the DisplayList can be altered using the change method {158}. Thus

the programmer generates the effect of continually updating the display, which in fact is using a double

buffering technique to smooth the repainting of the display. The user is not concerned with the repainting

of the display as this handled within the ActiveCanvas process. Thus the DisplayList array of

GrahicsCommands has an initial element that clears the display area, which is then overwritten by the

sequence of GraphicsCommands in the array. In this manner sophisticated animation can be achieved,

without having to overwrite each particle individually.

11.2.5 The UserInterface Process

The UserInterface process is shown in Listing 13-8. The properties of the process include the

particleCanvas, fromPM {168}, the size of the canvas {169}, the two input channels,

tempValueConfig {170} and pauseButtonConfig {171} used to configure the temperature value and

the start button. Finally, the buttonEvent channel is used to output button events to the

ParticleManager process {172}.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 11

167 class UserInterface implements CSProcess {

168 def ActiveCanvas particleCanvas
169 def int canvasSize
170 def ChannelInput tempValueConfig
171 def ChannelInput pauseButtonConfig
172 def ChannelOutput buttonEvent

173 void run() {
174 def root = new ActiveClosingFrame ("Brownian Motion Particle System")
175 def mainFrame = root.getActiveFrame()

176 def tempLabel = new Label ("Temperature")
177 def tempValue = new ActiveLabel (tempValueConfig)
178 tempValue.setAlignment(Label.CENTER)

179 def upButton = new ActiveButton (null, buttonEvent, "Up")
180 def downButton = new ActiveButton (null, buttonEvent, "Down")
181 def pauseButton = new ActiveButton (pauseButtonConfig,
182 buttonEvent, "START")

183 def tempContainer = new Container()
184 tempContainer.setLayout (new GridLayout (1, 5))
185 tempContainer.add (pauseButton)
186 tempContainer.add (tempLabel)
187 tempContainer.add (upButton)
188 tempContainer.add (tempValue)
189 tempContainer.add (downButton)

190 particleCanvas.setSize (canvasSize, canvasSize)
191 mainFrame.setLayout(new BorderLayout())
192 mainFrame.add (particleCanvas, BorderLayout.CENTER)
193 mainFrame.add (tempContainer, BorderLayout.SOUTH)
194 mainFrame.pack()
195 mainFrame.setVisible (true)

196 def network = [root, particleCanvas,
197 tempValue, upButton,
198 downButton, pauseButton
199]

200 new PAR (network).run()
201 }
202 }

Listing 11-8 The User Interface Process

The run method of this process comprises a list of definitions and associated method calls that

instantiates the graphical user interface. First, root {174}, an ActiveClosingFrame is defined that will

be used to hold the rest of the interface components. An ActiveClosiongFrame is defined with the

frame’s title as a parameter and is not introduced by a property name because these processes are defined

as Java classes and thus are constructed using the normal Java mechanism. ActiveClosingFrame is a

specialisation of ActiveFrame that permits the closing of the frame using the normal window based

controls. Interface components have to be added to the enclosed frame which is accessed by means of the

getActiveFrameMethod() call {175}. The next part of the Listing shows the definition of the interface

widgets both active and ordinary AWT non-active ones which can be mixed as required. The Label,

tempLabel, which displays the text ‘Temperature’ is constructed {176}. An ActiveLabel called

tempValue is then defined {177} with the channel tempValueConfig as its parameter. Typically, an

active widget has a constructor that comprises the configuration and event channels, together with any

other appropriate parameter. The alignment of the label is also specified {178}. After this the required

ActiveButtons are defined {179-182}, in which the null parameter is a placeholder for the not needed

configuration channel. The additional parameter specifies the initial text associated with the button. The

pauseButton requires a configuration channel {181} because the value of the text String associated

with the button changes as the application progresses.

Next a Container, tempContainer is defined {183} that holds all the components associated with the

manipulation of temperature together with the pauseButton. The Container uses a GridLayout {184}.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 12

The previously defined buttons and label are then added to the tempContainer {185-189}. The size of

particleCanvas is specified {190}.

The mainframe can now be created {191-195} by specifying it to be a BorderLayout {191}. The

particleCanvas and tempContainer are then added to the mainframe in the CENTER and SOUTH of the

layout {192, 193}. The mainframe is then packed and setVisible {194, 195}.

Finally, a process network is constructed that comprises the root and the remaining active widgets {196-

199}. The network is then run {200} and that is all that needs to be specified for the user interface

requirements of this application. The event handler and listener methods normally required do not have

to be written as these have been encapsulated within the active widgets, thereby simplifying the

construction of the user interface.

11.2.6 Invoking the Brownian Motion System

Listing 13-9 gives the script that is required to invoke the Brownian motion system. The Any2One

channel connect and the One2Any channel update are defined {203, 204}. The fundamental constants of

the system are either obtained from a user interaction or defined as constants {205-208}. The empty List

network is defined {209} to which is appended each of the Particle processes {211-217}. The

ParticleInterface process is finally appended to network {218-223}. The system is then executed by

running PAR {225}.

203 Any2OneChannel connect = Channel.createAny2One()
204 One2AnyChannel update = Channel.createOne2Any()

205 def CSIZE = Ask.Int ("Size of Canvas (200, 600)?: ", 200, 600)
206 def CENTRE = CSIZE / 2
207 def PARTICLES = Ask.Int ("Number of Particles (10, 200)?: ", 10, 200)
208 def INIT_TEMP = 25

209 def network = []
210 for (i in 0..< PARTICLES) {
211 network << new Particle (id: i,
212 sendPosition: connect.out(),
213 getPosition: update.in(),
214 x: CENTRE,
215 y: CENTRE,
216 temperature: INIT_TEMP)
217 }

218 network << (new ParticleInterface (inChannel: connect.in(),
219 outChannel: update.out(),
220 canvasSize: CSIZE,
221 particles: PARTICLES,
222 centre: CENTRE,
223 initialTemp: INIT_TEMP))
224 println "Starting Particle System"

225 new PAR (network).run()

Listing 11-9 The Script To Invoke the Brownian Motion System

A typical screen capture of the system, when it has been PAUSEd is shown in Output 13-1. We can

observe that the control button has been set to RESTART. The temperature is currently set at 40 and the

last operation was to increase its value because it is surrounded by + symbols. The Up and Down buttons

are clearly visible. The screen is derived from a system that has a canvas size of 450 pixels running 100

particles.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 13

Output 11-1 Screen Capture of the Brownian Motion System

11.3 Summary

This chapter has described how user interfaces can be constructed very simply using the active widget

concept. Of most significance is the relative simplicity of the user interface definition as it does not

require the programmer to implement the event and listener methods normally required. It has introduced

a standard design pattern for user interface applications in which there is a process that undertakes the

processing ParticleManager and its associated UserInterface process that are executed in parallel.

The concept of a DisplayList has been introduced which simplifies the programming of animated user

interfaces based upon drawing in an ActiveCanvas. This in itself typifies the ease with which user

interface can be constructed using active widgets because the programmer can use the parallel

programming constructs to implement the interaction between user and application processes.

The design and implementation of user interfaces has become a much easier task because the user is no

longer concerned with the writing of event handler and listener methods. Furthermore, the encapsulation

of interface components, which run in their own thread and their associated event handler thread into a

single process, makes it much easier to build the system that interacts with the interface.

11.4 Exercises

1. The Control process in the Scaling system currently updates the scaling factor according to an

automatic system. Replace this with a user interface that issues the suspend communication, obtains

the current scaling factor and then asks the user for the new scaling factor that is then injected into the

Scaler. The original and scaled values should also be output to the user interface.

