
Performance Co-
Pilot™ User's and

Administrator's Guide

Performance Co-Pilot™ User's and Administrator's Guide

Performance Co-Pilot™ User's and Administrator's Guide
Maintained by:
The Performance Co-Pilot Development Team

pcp@oss.sgi.com

http://oss.sgi.com/projects/pcp/

PERFORMANCE
CO-PILOT

Copyright © 2000, 2013 Silicon Graphics, Inc.
Copyright © 2013 Red Hat, Inc.

LICENSE
Permission is granted to copy, distribute, and/or modify this document under the terms of the
Creative Commons Attribution-Share Alike, Version 3.0 or any later version published by the Creative
Commons Corp. A copy of the license is available at http://creativecommons.org/licenses/by-sa/3.0/us/

TRADEMARKS AND ATTRIBUTIONS
Silicon Graphics, SGI and the SGI logo are registered trademarks and Performance Co-Pilot is a
trademark of Silicon Graphics, Inc.

Red Hat and the Shadowman logo are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Cisco is a trademark of Cisco Systems, Inc. Linux is a registered trademark of Linus Torvalds, used
with permission. UNIX is a registered trademark of The Open Group.

mailto:pcp@oss.sgi.com
http://oss.sgi.com/projects/pcp/
http://creativecommons.org/licenses/by-sa/3.0/us/

iii

About This Guide vii
1. What This Guide Contains ... vii
2. Audience for This Guide .. vii
3. Related Resources .. viii
4. Man Pages ... viii
5. Web Site .. viii
6. Conventions .. viii
7. Reader Comments ... ix

1. Introduction to PCP 1
1.1. Objectives .. 1

1.1.1. PCP Target Usage .. 1
1.1.2. Empowering the PCP User .. 1
1.1.3. Unification of Performance Metric Domains ... 1
1.1.4. Uniform Naming and Access to Performance Metrics .. 2
1.1.5. PCP Distributed Operation ... 2
1.1.6. Dynamic Adaptation to Change .. 2
1.1.7. Logging and Retrospective Analysis ... 2
1.1.8. Automated Operational Support .. 3
1.1.9. PCP Extensibility ... 3
1.1.10. Metric Coverage .. 3

1.2. Conceptual Foundations ... 3
1.2.1. Performance Metrics .. 4
1.2.2. Performance Metric Instances .. 4
1.2.3. Current Metric Context ... 4
1.2.4. Sources of Performance Metrics and Their Domains .. 4
1.2.5. Distributed Collection ... 5
1.2.6. Performance Metrics Name Space ... 6
1.2.7. Descriptions for Performance Metrics .. 7
1.2.8. Values for Performance Metrics .. 7
1.2.9. Collector and Monitor Roles ... 8
1.2.10. Retrospective Sources of Performance Metrics .. 9
1.2.11. Product Extensibility ... 9

1.3. Overview of Component Software ... 10
1.3.1. Performance Monitoring and Visualization ... 10
1.3.2. Collecting, Transporting, and Archiving Performance Information 11
1.3.3. Operational and Infrastructure Support .. 14
1.3.4. Application and Agent Development .. 15

2. Installing and Configuring Performance Co-Pilot 17
2.1. Product Structure ... 17
2.2. Performance Metrics Collection Daemon (PMCD) ... 17

2.2.1. Starting and Stopping the PMCD .. 17
2.2.2. Restarting an Unresponsive PMCD ... 18
2.2.3. PMCD Diagnostics and Error Messages .. 18
2.2.4. PMCD Options and Configuration Files ... 18

2.3. Managing Optional PMDAs ... 23
2.3.1. PMDA Installation on a PCP Collector Host ... 24
2.3.2. PMDA Removal on a PCP Collector Host ... 25

2.4. Troubleshooting .. 26
2.4.1. Performance Metrics Name Space .. 26
2.4.2. Missing and Incomplete Values for Performance Metrics 26

Performance Co-Pilot™ User's and Administrator's Guide

iv

2.4.3. Kernel Metrics and the PMCD .. 27

3. Common Conventions and Arguments 31
3.1. Alternate Metrics Source Options .. 31

3.1.1. Fetching Metrics from Another Host .. 31
3.1.2. Fetching Metrics from an Archive Log ... 32

3.2. General PCP Tool Options .. 32
3.2.1. Common Directories and File Locations .. 32
3.2.2. Alternate Performance Metric Name Spaces ... 33

3.3. Time Duration and Control .. 34
3.3.1. Performance Monitor Reporting Frequency and Duration 34
3.3.2. Time Window Options .. 34
3.3.3. Timezone Options .. 36

3.4. PCP Environment Variables .. 36
3.5. Running PCP Tools through a Firewall .. 37

3.5.1. The pmproxy service .. 38
3.6. Transient Problems with Performance Metric Values .. 38

3.6.1. Performance Metric Wraparound .. 38
3.6.2. Time Dilation and Time Skew ... 38

4. Monitoring System Performance 39
4.1. The pmstat Command .. 39
4.2. The pmdumptext Command .. 40
4.3. The pmval Command .. 41
4.4. The pminfo Command .. 42
4.5. The pmstore Command .. 45

5. Performance Metrics Inference Engine 47
5.1. Introduction to pmie ... 47
5.2. Basic pmie Usage ... 49

5.2.1. pmie use of PCP services ... 49
5.2.2. Simple pmie Usage ... 50
5.2.3. Complex pmie Examples ... 51

5.3. Specification Language for pmie ... 53
5.3.1. Basic pmie Syntax .. 53
5.3.2. Setting Evaluation Frequency ... 55
5.3.3. pmie Metric Expressions ... 55
5.3.4. pmie Rate Conversion ... 57
5.3.5. pmie Arithmetic Expressions .. 58
5.3.6. pmie Logical Expressions .. 58
5.3.7. pmie Rule Expressions .. 61
5.3.8. pmie Intrinsic Operators .. 63

5.4. pmie Examples .. 64
5.5. Developing and Debugging pmie Rules .. 66
5.6. Caveats and Notes on pmie ... 66

5.6.1. Performance Metrics Wraparound ... 66
5.6.2. pmie Sample Intervals ... 66
5.6.3. pmie Instance Names ... 67
5.6.4. pmie Error Detection ... 67

5.7. Creating pmie Rules with pmieconf .. 67
5.8. Management of pmie Processes .. 70

5.8.1. Add a pmie crontab Entry ... 71
5.8.2. Global Files and Directories ... 72

v

5.8.3. pmie Instances and Their Progress .. 72

6. Archive Logging 73
6.1. Introduction to Archive Logging ... 73

6.1.1. Archive Logs and the PMAPI ... 74
6.1.2. Retrospective Analysis Using Archive Logs ... 74
6.1.3. Using Archive Logs for Capacity Planning ... 74

6.2. Using Archive Logs with Performance Tools ... 74
6.2.1. Coordination between pmlogger and PCP tools ... 75
6.2.2. Administering PCP Archive Logs Using cron Scripts .. 75
6.2.3. Archive Log File Management .. 76

6.3. Cookbook for Archive Logging .. 78
6.3.1. Primary Logger .. 79
6.3.2. Other Logger Configurations .. 80
6.3.3. Archive Log Administration ... 81

6.4. Other Archive Logging Features and Services .. 82
6.4.1. PCP Archive Folios .. 82
6.4.2. Manipulating Archive Logs with pmlogextract .. 82
6.4.3. Summarizing Archive Logs with pmlogsummary ... 82
6.4.4. Primary Logger .. 83
6.4.5. Using pmlc ... 83

6.5. Archive Logging Troubleshooting ... 84
6.5.1. pmlogger Cannot Write Log ... 84
6.5.2. Cannot Find Log .. 85
6.5.3. Primary pmlogger Cannot Start .. 85
6.5.4. Identifying an Active pmlogger Process ... 86
6.5.5. Illegal Label Record ... 87
6.5.6. Empty Archive Log Files or pmlogger Exits Immediately 87

7. Performance Co-Pilot Deployment Strategies 89
7.1. Basic Deployment .. 89
7.2. PCP Collector Deployment .. 91

7.2.1. Principal Server Deployment .. 91
7.2.2. Quality of Service Measurement ... 92

7.3. PCP Archive Logger Deployment .. 93
7.3.1. Deployment Options .. 93
7.3.2. Resource Demands for the Deployment Options .. 93
7.3.3. Operational Management ... 94
7.3.4. Exporting PCP Archive Logs .. 94

7.4. PCP Inference Engine Deployment ... 94
7.4.1. Deployment Options .. 94
7.4.2. Resource Demands for the Deployment Options .. 95
7.4.3. Operational Management ... 96

8. Customizing and Extending PCP Services 97
8.1. PMDA Customization .. 97

8.1.1. Customizing the Summary PMDA ... 97
8.2. PCP Tool Customization ... 100

8.2.1. Archive Logging Customization ... 100
8.2.2. Inference Engine Customization .. 101

8.3. PMNS Management ... 102
8.3.1. PMNS Processing Framework .. 102
8.3.2. PMNS Syntax .. 103

Performance Co-Pilot™ User's and Administrator's Guide

vi

8.4. PMDA Development ... 104
8.5. PCP Tool Development ... 104

A. Acronyms 107

Index 109

vii

About This Guide
This guide describes the Performance Co-Pilot (PCP) performance analysis toolkit. PCP provides
a systems-level suite of tools that cooperate to deliver distributed performance monitoring and
performance management services spanning hardware platforms, operating systems, service layers,
database internals, user applications and distributed architectures.

PCP is a cross-platform, open source software package - customizations, extensions, source code
inspection, and tinkering in general is actively encouraged.

“About This Guide” includes short descriptions of the chapters in this book, directs you to additional
sources of information, and explains typographical conventions.

1. What This Guide Contains
This guide contains the following chapters:

• Chapter 1, Introduction to PCP, provides an introduction, a brief overview of the software
components, and conceptual foundations of the PCP software.

• Chapter 2, Installing and Configuring Performance Co-Pilot, describes the basic installation and
configuration steps necessary to get PCP running on your systems.

• Chapter 3, Common Conventions and Arguments, describes the user interface components that are
common to most of the text-based utilities that make up the monitor portion of PCP.

• Chapter 4, Monitoring System Performance, describes the performance monitoring tools available in
Performance Co-Pilot (PCP).

• Chapter 5, Performance Metrics Inference Engine, describes the Performance Metrics Inference
Engine (pmie) tool that provides automated monitoring of, and reasoning about, system
performance within the PCP framework.

• Chapter 6, Archive Logging, covers the PCP services and utilities that support archive logging for
capturing accurate historical performance records.

• Chapter 7, Performance Co-Pilot Deployment Strategies, presents the various options for deploying
PCP functionality across cooperating systems.

• Chapter 8, Customizing and Extending PCP Services, describes the procedures necessary to
ensure that the PCP configuration is customized in ways that maximize the coverage and quality of
performance monitoring and management services.

• Appendix A, Acronyms, provides a comprehensive list of the acronyms used in this guide and in the
man pages for Performance Co-Pilot.

2. Audience for This Guide
This guide is written for the system administrator or performance analyst who is directly using and
administering PCP applications.

About This Guide

viii

3. Related Resources
The Performance Co-Pilot Programmer's Guide, a companion document to the Performance Co-Pilot
User's and Administrator's Guide, is intended for developers who want to use the PCP framework
and services for exporting additional collections of performance metrics, or for delivering new or
customized applications to enhance performance management.

The Performance Co-Pilot Tutorials and Case Studies provides a series of real-world examples of
using various PCP tools, and lessons learned from deploying the toolkit in production environments.
It serves to provide reinforcement of the general concepts discussed in the other two books with
additional case studies, and in some cases very detailed discussion of specifics of individual tools.

Additional resources include man pages and the project web site.

4. Man Pages
The operating system man pages provide concise reference information on the use of commands,
subroutines, and system resources. There is usually a man page for each PCP command or
subroutine. To see a list of all the PCP man pages, start from the following command:

man PCPIntro

Each man page usually has a "SEE ALSO" section, linking to other, related entries.

To see a particular man page, supply its name to the man command, for example:

man pcp

The man pages are arranged in different sections - user commands, programming interfaces, and so
on. For a complete list of manual sections on a platform enter the command:

man man

When referring to man pages, this guide follows a standard convention: the section number in
parentheses follows the item. For example, pminfo(1) refers to the man page in section 1 for the
pminfo command.

5. Web Site
The following web site is accessible to everyone:

URL
Description

http://oss.sgi.com/projects/pcp/
PCP is open source software released under the GNU General Public License (GPL) and GNU
Lesser General Public License (LGPL)

6. Conventions
The following conventions are used throughout this document:

http://oss.sgi.com/projects/pcp/

Reader Comments

ix

Convention
Meaning

${PCP_VARIABLE}
A brace-enclosed all-capital-letters syntax indicates a variable that has been sourced from the
global ${PCP_DIR}/etc/pcp.conf file. These special variables indicate parameters that affect
all PCP commands, and are likely to be different between platforms.

command
This fixed-space font denotes literal items such as commands, files, routines, path names, signals,
messages, and programming language structures.

variable
Italic typeface denotes variable entries and words or concepts being defined.

user input
This bold, fixed-space font denotes literal items that the user enters in interactive sessions.
(Output is shown in nonbold, fixed-space font.)

[]
Brackets enclose optional portions of a command or directive line.

...
Ellipses indicate that a preceding element can be repeated.

ALL CAPS
All capital letters denote environment variables, operator names, directives, defined constants,
and macros in C programs.

()
Parentheses that follow function names surround function arguments or are empty if the function
has no arguments; parentheses that follow commands surround man page section numbers.

7. Reader Comments
If you have comments about the technical accuracy, content, or organization of this document, contact
the PCP maintainers using either the email address or the web site listed earlier.

We value your comments and will respond to them promptly.

x

Chapter 1.

1

Introduction to PCP
This chapter provides an introduction to Performance Co-Pilot (PCP), an overview of its individual
components, and conceptual information to help you use this software.

The following sections are included:

• Section 1.1, “Objectives” covers the intended purposes of PCP.

• Section 1.3, “Overview of Component Software”, describes PCP tools and agents.

• Section 1.2, “Conceptual Foundations”, discusses the design theories behind PCP.

1.1. Objectives

Performance Co-Pilot (PCP) provides a range of services that may be used to monitor and manage
system performance. These services are distributed and scalable to accommodate the most complex
system configurations and performance problems.

1.1.1. PCP Target Usage
PCP is targeted at the performance analyst, benchmarker, capacity planner, developer, database
administrator, or system administrator with an interest in overall system performance and a need
to quickly isolate and understand performance behavior, resource utilization, activity levels, and
bottlenecks in complex systems. Platforms that can benefit from this level of performance analysis
include large servers, server clusters, or multiserver sites delivering Database Management Systems
(DBMS), compute, Web, file, or video services.

1.1.2. Empowering the PCP User
To deal efficiently with the dynamic behavior of complex systems, performance analysts need to filter
out noise from the overwhelming stream of performance data, and focus on exceptional scenarios.
Visualization of current and historical performance data, and automated reasoning about performance
data, effectively provide this filtering.

From the PCP end user's perspective, PCP presents an integrated suite of tools, user interfaces, and
services that support real-time and retrospective performance analysis, with a bias towards eliminating
mundane information and focusing attention on the exceptional and extraordinary performance
behaviors. When this is done, the user can concentrate on in-depth analysis or target management
procedures for those critical system performance problems.

1.1.3. Unification of Performance Metric Domains
At the lowest level, performance metrics are collected and managed in autonomous performance
domains such as the operating system kernel, a DBMS, a layered service, or an end-user application.
These domains feature a multitude of access control policies, access methods, data semantics, and
multiversion support. All this detail is irrelevant to the developer or user of a performance monitoring
tool, and is hidden by the PCP infrastructure.

Performance Metrics Domain Agents (PMDAs) within PCP encapsulate the knowledge about, and
export performance information from, autonomous performance domains.

Chapter 1. Introduction to PCP

2

1.1.4. Uniform Naming and Access to Performance Metrics
Usability and extensibility of performance management tools mandate a single scheme for naming
performance metrics. The set of defined names constitutes a Performance Metrics Name Space
(PMNS). Within PCP, the PMNS is adaptive so it can be extended, reshaped, and pruned to meet the
needs of particular applications and users.

PCP provides a single interface to name and retrieve values for all performance metrics,
independently of their source or location.

1.1.5. PCP Distributed Operation
From a purely pragmatic viewpoint, a single workstation must be able to monitor the concurrent
performance of multiple remote hosts. At the same time, a single host may be subject to monitoring
from multiple remote workstations.

These requirements suggest a classic client-server architecture, which is exactly what PCP uses to
provide concurrent and multiconnected access to performance metrics, independent of their host
location.

1.1.6. Dynamic Adaptation to Change
Complex systems are subject to continual changes as network connections fail and are reestablished;
nodes are taken out of service and rebooted; hardware is added and removed; and software is
upgraded, installed, or removed. Often these changes are asynchronous and remote (perhaps in
another geographic region or domain of administrative control).

The distributed nature of the PCP (and the modular fashion in which performance metrics domains
can be installed, upgraded, and configured on different hosts) enables PCP to adapt concurrently
to changes in the monitored system(s). Variations in the available performance metrics as a
consequence of configuration changes are handled automatically and become visible to all clients as
soon as the reconfigured host is rebooted or the responsible agent is restarted.

PCP also detects loss of client-server connections, and most clients support subsequent automated
reconnection.

1.1.7. Logging and Retrospective Analysis
A range of tools is provided to support flexible, adaptive logging of performance metrics for archive,
playback, remote diagnosis, and capacity planning. PCP archive logs may be accumulated either at
the host being monitored, at a monitoring workstation, or both.

A universal replay mechanism, modeled on media controls1, supports play, step, rewind, fast forward
and variable speed processing of archived performance data. Replay for multiple archives, from
multiple hosts, is facilitated by an archive aggregation concept.

Most PCP applications are able to process archive logs and real-time performance data with equal
facility. Unification of real-time access and access to the archive logs, in conjunction with the media
controls, provides powerful mechanisms for building performance tools and to review both current and
historical performance data.

1 http://en.wikipedia.org/wiki/Media_controls

http://en.wikipedia.org/wiki/Media_controls
http://en.wikipedia.org/wiki/Media_controls

Automated Operational Support

3

1.1.8. Automated Operational Support
For operational and production environments, PCP provides a framework with scripts to customize in
order to automate the execution of ongoing tasks such as these:

• Centralized archive logging for multiple remote hosts

• Archive log rotation, consolidation, and culling

• Web-based publishing of charts showing snapshots of performance activity levels in the recent past

• Flexible alarm monitoring: parameterized rules to address common critical performance scenarios
and facilities to customize and refine this monitoring

• Retrospective performance audits covering the recent past; for example, daily or weekly checks for
performance regressions or quality of service problems

1.1.9. PCP Extensibility
PCP permits the integration of new performance metrics into the PMNS, the collection infrastructure,
and the logging framework. The guiding principle is, “if it is important for monitoring system
performance, and you can measure it, you can easily integrate it into the PCP framework.”

For many PCP users, the most important performance metrics are not those already supported, but
new performance metrics that characterize the essence of good or bad performance at their site, or
within their particular application environment.

One example is an application that measures the round-trip time for a benign “probe” transaction
against some mission-critical application.

For application developers, a library is provided to support easy-to-use insertion of trace and
monitoring points within an application, and the automatic export of resultant performance data into
the PCP framework. Other libraries and tools aid the development of customized and fully featured
Performance Metrics Domain Agents (PMDAs).

Extensive source code examples are provided in the distribution, and by using the PCP toolkit
and interfaces, these customized measures of performance or quality of service can be easily and
seamlessly integrated into the PCP framework.

1.1.10. Metric Coverage
The core PCP modules support export of performance metrics that include kernel instrumentation,
hardware instrumentation, process-level resource utilization, database and other system services
instrumentation, and activity in the PCP collection infrastructure.

The supplied agents support thousands of distinct performance metrics, many of which can have
multiple values, for example, per disk, per CPU, or per process.

1.2. Conceptual Foundations
The following sections provide a detailed overview of concepts that underpin Performance Co-Pilot
(PCP).

Chapter 1. Introduction to PCP

4

1.2.1. Performance Metrics
Across all of the supported performance metric domains, there are a large number of performance
metrics. Each metric has its own structure and semantics. PCP presents a uniform interface to these
metrics, independent of the underlying metric data source.

The Performance Metrics Name Space (PMNS) provides a hierarchical classification of human-
readable metric names, and a mapping from these external names to internal metric identifiers. See
Section 1.2.6, “Performance Metrics Name Space”, for a description of the PMNS.

1.2.2. Performance Metric Instances
When performance metric values are returned to a requesting application, there may be more than
one value instance for a particular metric; for example, independent counts for each CPU, process,
disk, or local filesystem. Internal instance identifiers correspond one to one with external (human-
readable) descriptions of the members of an instance domain.

Transient performance metrics (such as per-process information) cause repeated requests for the
same metric to return different numbers of values, or changes in the particular instance identifiers
returned. These changes are expected and fully supported by the PCP infrastructure; however, metric
instantiation is guaranteed to be valid only at the time of collection.

1.2.3. Current Metric Context
When performance metrics are retrieved, they are delivered in the context of a particular source of
metrics, a point in time, and a profile of desired instances. This means that the application making the
request has already negotiated to establish the context in which the request should be executed.

A metric source may be the current performance data from a particular host (a live or real-time
source), or an archive log of performance data collected by pmlogger at some distant host or at an
earlier time (a retrospective or archive source).

By default, the collection time for a performance metric is the current time of day for real-time sources,
or current point within an archive source. For archives, the collection time may be reset to an arbitrary
time within the bounds of the archive log.

1.2.4. Sources of Performance Metrics and Their Domains
Instrumentation for the purpose of performance monitoring typically consists of counts of activity
or events, attribution of resource consumption, and service-time or response-time measures.
This instrumentation may exist in one or more of the functional domains as shown in Figure 1.1,
“Performance Metric Domains as Autonomous Collections of Data”.

Access m ethod Access m ethod Access m ethod Access m ethod

Perform ance
m etric
dom ains

Kernel
DBMS Layered

service
XYZ

End-user
applicat ion

ABC

Figure 1.1. Performance Metric Domains as Autonomous Collections of Data

Distributed Collection

5

Each domain has an associated access method:

• The operating system kernel, including sub-system data structures - per-process resource
consumption, network statistics, disk activity, or memory management instrumentation.

• A layered software service such as activity logs for a World Wide Web server or an email delivery
server.

• An application program such as measured response time for a production application running a
periodic and benign probe transaction (as often required in service level agreements), or rate of
computation and throughput in jobs per minute for a batch stream.

• External equipment such as network routers and bridges.

For each domain, the set of performance metrics may be viewed as an abstract data type, with an
associated set of methods that may be used to perform the following tasks:

• Interrogate the metadata that describes the syntax and semantics of the performance metrics

• Control (enable or disable) the collection of some or all of the metrics

• Extract instantiations (current values) for some or all of the metrics

We refer to each functional domain as a performance metrics domain and assume that domains are
functionally, architecturally, and administratively independent and autonomous. Obviously the set of
performance metrics domains available on any host is variable, and changes with time as software
and hardware are installed and removed.

The number of performance metrics domains may be further enlarged in cluster-based or network-
based configurations, where there is potentially an instance of each performance metrics domain on
each node. Hence, the management of performance metrics domains must be both extensible at a
particular host and distributed across a number of hosts.

Each performance metrics domain on a particular host must be assigned a unique Performance Metric
Identifier (PMID). In practice, this means unique identifiers are assigned globally for each performance
metrics domain type. For example, the same identifier would be used for the Apache Web Server
performance metrics domain on all hosts.

1.2.5. Distributed Collection
The performance metrics collection architecture is distributed, in the sense that any performance tool
may be executing remotely. However, a PMDA usually runs on the system for which it is collecting
performance measurements. In most cases, connecting these tools together on the collector host is
the responsibility of the PMCD process, as shown in Figure 1.2, “Process Structure for Distributed
Operation”.

Chapter 1. Introduction to PCP

6

PMDA PMDA PMDAPMDA

pm cd

PMDA

Monitor Monitor Monitor

pm cd

Rem ote Host Local Host

Figure 1.2. Process Structure for Distributed Operation

The host running the monitoring tools does not require any collection tools, including pmcd, because
all requests for metrics are sent to the pmcd process on the collector host. These requests are then
forwarded to the appropriate PMDAs, which respond with metric descriptions, help text, and most
importantly, metric values.

The connections between monitor clients and pmcd processes are managed in libpcp, below the
PMAPI level; see the pmapi(3) man page. Connections between PMDAs and pmcd are managed by
the PMDA routines; see the pmda(3) man page. There can be multiple monitor clients and multiple
PMDAs on the one host, but normally there would be only one pmcd process.

1.2.6. Performance Metrics Name Space
Internally, each unique performance metric is identified by a Performance Metric Identifier (PMID)
drawn from a universal set of identifiers, including some that are reserved for site-specific, application-
specific, and customer-specific use.

An external name space - the Performance Metrics Name Space (PMNS) - maps from a hierarchy (or
tree) of human-readable names to PMIDs.

1.2.6.1. Performance Metrics Name Space Diagram
Each node in the PMNS tree is assigned a label that must begin with an alphabet character, and be
followed by zero or more alphanumeric characters or the underscore (_) character. The root node of
the tree has the special label of root.

A metric name is formed by traversing the tree from the root to a leaf node with each node label on
the path separated by a period. The common prefix root. is omitted from all names. For example,
Figure 1.3, “Small Performance Metrics Name Space (PMNS) ” shows the nodes in a small subsection
of a PMNS.

Descriptions for Performance Metrics

7

root

hw

. . .

network routerkernel

.

all percpu udp tcp recv

total_ut ilrcvpacksyscall

Figure 1.3. Small Performance Metrics Name Space (PMNS)

In this subsection, the following are valid names for performance metrics:

kernel.percpu.syscall
network.tcp.rcvpack
hw.router.recv.total_util

1.2.7. Descriptions for Performance Metrics
Through the various performance metric domains, the PCP must support a wide range of formats and
semantics for performance metrics. This metadata describing the performance metrics includes the
following:

• The internal identifier, Performance Metric Identifier (PMID), for the metric

• The format and encoding for the values of the metric, for example, an unsigned 32-bit integer or a
string or a 64-bit IEEE format floating point number

• The semantics of the metric, particularly the interpretation of the values as free-running counters or
instantaneous values

• The dimensionality of the values, in the dimensions of events, space, and time

• The scale of values; for example, bytes, kilobytes (KB), or megabytes (MB) for the space dimension

• An indication if the metric may have one or many associated values

• Short (and extended) help text describing the metric

For each metric, this metadata is defined within the associated PMDA, and PCP arranges for the
information to be exported to performance tools that use the metadata when interpreting the values for
each metric.

1.2.8. Values for Performance Metrics
The following sections describe two types of performance metrics, single-valued and set-valued.

Chapter 1. Introduction to PCP

8

1.2.8.1. Single-Valued Performance Metrics
Some performance metrics have a singular value within their performance metric domains. For
example, available memory (or the total number of context switches) has only one value per
performance metric domain, that is, one value per host. The metadata describing the metric makes
this fact known to applications that process values for these metrics.

1.2.8.2. Set-Valued Performance Metrics
Some performance metrics have a set of values or instances in each implementing performance
metric domain. For example, one value for each disk, one value for each process, one value for each
CPU, or one value for each activation of a given application.

When a metric has multiple instances, the PCP framework does not pollute the Name Space with
additional metric names; rather, a single metric may have an associated set of values. These multiple
values are associated with the members of an instance domain, such that each instance has a unique
instance identifier within the associated instance domain. For example, the “per CPU” instance domain
may use the instance identifiers 0, 1, 2, 3, and so on to identify the configured processors in the
system.

Internally, instance identifiers are encoded as binary values, but each performance metric domain also
supports corresponding strings as external names for the instance identifiers, and these names are
used at the user interface to the PCP utilities.

For example, the performance metric disk.dev.total counts I/O operations for each disk spindle,
and the associated instance domain contains one member for each disk spindle. On a system with five
specific disks, one value would be associated with each of the external and internal instance identifier
pairs shown in Table 1.1, “Sample Instance Identifiers for Disk Statistics ”.

External Instance Identifier Internal Instance Identifier

disk0 131329

disk1 131330

disk2 131331

disk3 131841

disk4 131842

Table 1.1. Sample Instance Identifiers for Disk Statistics

Multiple performance metrics may be associated with a single instance domain.

Each performance metric domain may dynamically establish the instances within an instance domain.
For example, there may be one instance for the metric kernel.percpu.idle on a workstation,
but multiple instances on a multiprocessor server. Even more dynamic is filesys.free, where the
values report the amount of free space per file system, and the number of values tracks the mounting
and unmounting of local filesystems.

PCP arranges for information describing instance domains to be exported from the performance metric
domains to the applications that require this information. Applications may also choose to retrieve
values for all instances of a performance metric, or some arbitrary subset of the available instances.

1.2.9. Collector and Monitor Roles
Hosts supporting PCP services are broadly classified into two categories:

Retrospective Sources of Performance Metrics

9

Collector
Hosts that have pmcd and one or more performance metric domain agents (PMDAs) running to
collect and export performance metrics

Monitor
Hosts that import performance metrics from one or more collector hosts to be consumed by tools
to monitor, manage, or record the performance of the collector hosts

Each PCP enabled host can operate as a collector, a monitor, or both.

1.2.10. Retrospective Sources of Performance Metrics
The PMAPI also supports delivery of performance metrics from a historical source in the form of
a PCP archive log. Archive logs are created using the pmlogger utility, and are replayed in an
architecture as shown in Figure 1.4, “Architecture for Retrospective Analysis”.

PCP Archive Log

Monitor

PMAPI

PCP Archive Log

Figure 1.4. Architecture for Retrospective Analysis

The PMAPI has been designed to minimize the differences required for an application to process
performance data from an archive or from a real-time source. As a result, most PCP tools support live
and retrospective monitoring with equal facility.

1.2.11. Product Extensibility
Much of the PCP software's potential for attacking difficult performance problems in production
environments comes from the design philosophy that considers extensibility to be critically important.

The performance analyst can take advantage of the PCP infrastructure to deploy value-added
performance monitoring tools and services. Here are some examples:

• Easy extension of the PCP collector to accommodate new performance metrics and new sources of
performance metrics, in particular using the interfaces of a special-purpose library to develop new
PMDAs (see the pmda(3) man page)

Chapter 1. Introduction to PCP

10

• Use of libraries (libpcp_pmda and libpcp_mmv) to aid in the development of new capabilities to
export performance metrics from local applications

• Operation on any performance metric using generalized toolkits

• Distribution of PCP components such as collectors across the network, placing the service where it
can do the most good

• Dynamic adjustment to changes in system configuration

• Flexible customization built into the design of all PCP tools

• Creation of new monitor applications, using the routines described in the pmapi(3) man page

1.3. Overview of Component Software
Performance Co-Pilot (PCP) is composed of both text-based and graphical tools. Each tool is fully
documented by a man page. These man pages are named after the tools or commands they describe,
and are accessible through the man command. For example, to see the pminfo(1) man page for the
pminfo command, enter this command:

man pminfo

A representative list of PCP tools and commands, grouped by functionality, is provided in the following
four sections.

1.3.1. Performance Monitoring and Visualization
The following tools provide the principal services for the PCP end-user with an interest in monitoring,
visualizing, or processing performance information collected either in real time or from PCP archive
logs:

pmatop
Full-screen monitor of the load on a system from a kernel, hardware and processes point of view.
It is modeled on the Linux atop(1) tool (home page2) and provides a showcase for the variety of
data available using PCP services and the Python scripting interfaces.

pmchart
Strip chart tool for arbitrary performance metrics. Interactive graphical utility that can display
multiple charts simultaneously, from multiple hosts or archives, aligned on a unified time axis (X-
axis), or on multiple tabs.

pmcollectl
Statistics collection tool with good coverage of a number of Linux kernel subsystems, with the
everything-in-one-tool approach pioneered by sar(1). It is modeled on the Linux collectl(1)
utility (home page3) and provides another example of use of the Python scripting interfaces to
build more complex functionality with relative ease, with PCP as a foundation.

pmdumptext
Outputs the values of arbitrary performance metrics collected live or from a PCP archive, in textual
format.

2 http://www.atoptool.nl/
3 http://collectl.sourceforge.net/

http://www.atoptool.nl/
http://collectl.sourceforge.net/
http://www.atoptool.nl/
http://collectl.sourceforge.net/

Collecting, Transporting, and Archiving Performance Information

11

pmevent
Reports on event metrics, decoding the timestamp and event parameters for text-based reporting.

pmie
Evaluates predicate-action rules over performance metrics for alarms, automated system
management tasks, dynamic configuration tuning, and so on. It is an inference engine.

pmieconf
Creates parameterized rules to be used with the PCP inference engine (pmie). It can be run either
interactively or from scripts for automating the setup of inference (the PCP start scripts do this, for
example, to generate a default configuration).

pminfo
Displays information about arbitrary performance metrics available from PCP, including help text
with -T.

pmlogsummary
Calculates and reports various statistical summaries of the performance metric values from a PCP
archive.

pmprobe
Probes for performance metric availability, values, and instances.

pmstat
Provides a text-based display of metrics that summarize the performance of one or more systems
at a high level.

pmval
Provides a text-based display of the values for arbitrary instances of a selected performance
metric, suitable for ASCII logs or inquiry over a slow link.

1.3.2. Collecting, Transporting, and Archiving Performance
Information
PCP provides the following tools to support real-time data collection, network transport, and archive
log creation services for performance data:

mkaf
Aggregates an arbitrary collection of PCP archive logs into a folio to be used with pmafm.

pmafm
Interrogates, manages, and replays an archive folio as created by mkaf, or the periodic archive
log management scripts, or the record mode of other PCP tools.

pmcd
Is the Performance Metrics Collection Daemon (PMCD). This daemon must run on each system
being monitored, to collect and export the performance information necessary to monitor the
system.

pmcd_wait
Waits for pmcd to be ready to accept client connections.

Chapter 1. Introduction to PCP

12

pmdaapache
Exports performance metrics from the Apache Web Server. It is a Performance Metrics Domain
Agent (PMDA).

pmdacisco
Extracts performance metrics from one or more Cisco routers.

pmdaelasticseach
Extracts performance metrics from an elasticsearch cluster.

pmdagfs2
Exports performance metrics from the GFS2 clustered filesystem.

pmdagluster
Extracts performance metrics from the Gluster filesystem.

pmdainfiniband
Exports performance metrics from the Infiniband kernel driver.

pmdakvm
Extracts performance metrics from the Linux Kernel Virtual Machine (KVM) infrastructure.

pmdalustrecomm
Exports performance metrics from the Lustre clustered filesystem.

pmdamailq
Exports performance metrics describing the current state of items in the sendmail queue.

pmdamemcache
Extracts performance metrics from memcached, a distributed memory caching daemon commonly
used to improve web serving performance.

pmdammv

Exports metrics from instrumented applications linked with the pcp_mmv shared library or the
Parfait4 framework for Java instrumentation. These metrics are custom developed per application,
and in the case of Parfait, automatically include numerous JVM, Tomcat and other server or
container statistics.

pmdamysql
Extracts performance metrics from the MySQL relational database.

pmdanamed
Exports performance metrics from the Internet domain name server, named.

pmdanginx
Extracts performance metrics from the nginx HTTP and reverse proxy server.

pmdapostfix
Export performance metrics from the Postfix mail transfer agent.

pmdapostgres
Extracts performance metrics from the PostgreSQL relational database.

4 http://code.google.com/p/parfait/

http://code.google.com/p/parfait/
http://code.google.com/p/parfait/

Collecting, Transporting, and Archiving Performance Information

13

pmdaproc
Exports performance metrics for running processes.

pmdarsyslog
Extracts performance metrics from the Reliable System Log daemon.

pmdasamba
Extracts performance metrics from Samba, a Windows SMB/CIFS server.

pmdasendmail
Exports mail activity statistics from sendmail.

pmdashping
Exports performance metrics for the availability and quality of service (response-time) for arbitrary
shell commands.

pmdasnmp
Extracts SNMP performance metrics from local or remote SNMP-enabled devices.

pmdasummary
Derives performance metrics values from values made available by other PMDAs. It is a PMDA
itself.

pmdasystemd
Extracts performance metrics from the systemd and journald services.

pmdatrace
Exports transaction performance metrics from application processes that use the pcp_trace
library.

pmdavmware
Extracts performance metrics from a VMWare virtualization host.

pmdaweblog

Scans Web-server logs to extract metrics characterizing.

pmdaxfs
Extracts performance metrics from the Linux kernel XFS filesystem implementation.

pmdumplog
Displays selected state information, control data, and metric values from a PCP archive log
created by pmlogger.

pmlc
Exercises control over an instance of the PCP archive logger pmlogger, to modify the profile of
which metrics are logged and/or how frequently their values are logged.

pmlogcheck
Performs integrity check for PCP archives.

pmlogconf
Creates or modifies pmlogger configuration files for many common logging scenarios, optionally
probing for available metrics and enabled functionality. It can be run either interactively or from

Chapter 1. Introduction to PCP

14

scripts for automating the setup of data logging (the PCP start scripts do this, for example, to
generate a default configuration).

pmlogextract
Reads one or more PCP archive logs and creates a temporally merged and reduced PCP archive
log as output.

pmlogger
Creates PCP archive logs of performance metrics over time. Many tools accept these PCP archive
logs as alternative sources of metrics for retrospective analysis.

pmproxy
Allows the execution of PCP tools through a network firewall system.

pmtrace
Provides a simple command line interface to the trace PMDA and its associated pcp_trace
library.

pmwebd
Is the Performance Metrics Web Daemon, a front-end to both pmcd and PCP archives, providing
a JSON interface suitable for use by web-based tools wishing to access performance data over
HTTP.

1.3.3. Operational and Infrastructure Support
PCP provides the following tools to support the PCP infrastructure and assist operational procedures
for PCP deployment in a production environment:

pcp
Summarizes that state of a PCP installation.

pmdbg
Describes the available facilities and associated control flags. PCP tools include internal
diagnostic and debugging facilities that may be activated by run-time flags.

pmerr
Translates PCP error codes into human-readable error messages.

pmhostname
Reports hostname as returned by gethostbyname. Used in assorted PCP management scripts.

pmie_check
Administration of the Performance Co-Pilot inference engine (pmie).

pmlock
Attempts to acquire an exclusive lock by creating a file with a mode of 0.

pmlogger_*
Allows you to create a customized regime of administration and management for PCP archive log
files. The pmlogger_check, pmlogger_daily, and pmlogger_merge scripts are intended for
periodic execution via the cron command.

Application and Agent Development

15

pmnewlog
Performs archive log rotation by stopping and restarting an instance of pmlogger.

pmnsadd
Adds a subtree of new names into a PMNS, as used by the components of PCP.

pmnsdel
Removes a subtree of names from a PMNS, as used by the components of the PCP.

pmnsmerge
Merges multiple PMNS files together, as used by the components of PCP.

pmstore
Reinitializes counters or assigns new values to metrics that act as control variables. The command
changes the current values for the specified instances of a single performance metric.

1.3.4. Application and Agent Development
The following PCP tools aid the development of new programs to consume performance data, and
new agents to export performance data within the PCP framework:

chkhelp
Checks the consistency of performance metrics help database files.

dbpmda
Allows PMDA behavior to be exercised and tested. It is an interactive debugger for PMDAs.

newhelp
Generates the database files for one or more source files of PCP help text.

pmapi
Defines a procedural interface for developing PCP client applications. It is the Performance
Metrics Application Programming Interface (PMAPI).

pmclient
Is a simple client that uses the PMAPI to report some high-level system performance metrics.

pmda
Is a library used by many shipped PMDAs to communicate with a pmcd process. It can expedite
the development of new and custom PMDAs.

pmgenmap
Generates C declarations and cpp(1) macros to aid the development of customized programs
that use the facilities of PCP. It is a PMDA development tool.

16

Chapter 2.

17

Installing and Configuring Performance
Co-Pilot
The sections in this chapter describe the basic installation and configuration steps necessary to run
Performance Co-Pilot (PCP) on your systems. The following major sections are included:

• Section 2.1, “Product Structure” describes the main packages of PCP software and how they must
be installed on each system.

• Section 2.2, “Performance Metrics Collection Daemon (PMCD)”, describes the fundamentals of
maintaining the performance data collector.

• Section 2.3, “Managing Optional PMDAs”, describes the basics of installing a new Performance
Metrics Domain Agent (PMDA) to collect metric data and pass it to the PMCD.

• Section 2.4, “Troubleshooting”, offers advice on problems involving the PMCD.

2.1. Product Structure
In a typical deployment, Performance Co-Pilot (PCP) would be installed in a collector configuration on
one or more hosts, from which the performance information could then be collected, and in a monitor
configuration on one or more workstations, from which the performance of the server systems could
then be monitored.

On some platforms Performance Co-Pilot is presented as multiple packages; typically separating the
server components from graphical user interfaces and documentation.

pcp-X.Y.Z-rev
package for core PCP

pcp-gui-X.Y.Z-rev
package for graphical PCP client tools

pcp-doc-X.Y.Z-rev
package for online PCP documentation

2.2. Performance Metrics Collection Daemon (PMCD)
On each Performance Co-Pilot (PCP) collection system, you must be certain that the pmcd daemon is
running. This daemon coordinates the gathering and exporting of performance statistics in response to
requests from the PCP monitoring tools.

2.2.1. Starting and Stopping the PMCD
To start the daemon, enter the following commands as root on each PCP collection system:

chkconfig pmcd on
${PCP_RC_DIR}/pmcd start

These commands instruct the system to start the daemon immediately, and again whenever the
system is booted. It is not necessary to start the daemon on the monitoring system unless you wish to
collect performance information from it as well.

Chapter 2. Installing and Configuring Performance Co-Pilot

18

To stop pmcd immediately on a PCP collection system, enter the following command:

${PCP_RC_DIR}/pmcd stop

2.2.2. Restarting an Unresponsive PMCD
Sometimes, if a daemon is not responding on a PCP collection system, the problem can be resolved
by stopping and then immediately restarting a fresh instance of the daemon. If you need to stop and
then immediately restart PMCD on a PCP collection system, use the start argument provided with
the script in ${PCP_RC_DIR}. The command syntax is, as follows:

${PCP_RC_DIR}/pmcd start

On startup, pmcd looks for a configuration file at ${PCP_PMCDCONF_PATH}. This file specifies which
agents cover which performance metrics domains and how PMCD should make contact with the
agents. A comprehensive description of the configuration file syntax and semantics can be found in
the pmcd(1) man page.

If the configuration is changed, pmcd reconfigures itself when it receives the SIGHUP signal. Use the
following command to send the SIGHUP signal to the daemon:

${PCP_BINADM_DIR}/pmsignal -a -s HUP pmcd

This is also useful when one of the PMDAs managed by pmcd has failed or has been terminated by
pmcd. Upon receipt of the SIGHUP signal, pmcd restarts any PMDA that is configured but inactive. The
exception to this rule is the case of a PMDA which must run with superuser privileges (where possible,
this is avoided) - for these PMDAs, a full pmcd restart must be performed, using the process described
earlier (not SIGHUP).

2.2.3. PMCD Diagnostics and Error Messages
If there is a problem with pmcd, the first place to investigate should be the pmcd.log file. By default,
this file is in the ${PCP_LOG_DIR}/pmcd directory.

2.2.4. PMCD Options and Configuration Files
There are two files that control PMCD operation. These are the ${PCP_PMCDCONF_PATH} and
${PCP_PMCDOPTIONS_PATH} files. The pmcd.options file contains the command line options used
with PMCD; it is read when the daemon is invoked by ${PCP_RC_DIR}/pmcd. The pmcd.conf file
contains configuration information regarding domain agents and the metrics that they monitor. These
configuration files are described in the following sections.

2.2.4.1. The pmcd.options File
Command line options for the PMCD are stored in the ${PCP_PMCDOPTIONS_PATH} file. The PMCD
can be invoked directly from a shell prompt, or it can be invoked by ${PCP_RC_DIR}/pmcd as part
of the boot process. It is usual and normal to invoke it using ${PCP_RC_DIR}/pmcd, reserving shell
invocation for debugging purposes.

The PMCD accepts certain command line options to control its execution, and these options are
placed in the pmcd.options file when ${PCP_RC_DIR}/pmcd is being used to start the daemon.
The following options (amongst others) are available:

PMCD Options and Configuration Files

19

-i address
For hosts with more than one network interface, this option specifies the interface on which this
instance of the PMCD accepts connections. Multiple -i options may be specified. The default in
the absence of any -i option is for PMCD to accept connections on all interfaces.

-l file
Specifies a log file. If no -l option is specified, the log file name is pmcd.log and it is created in
the directory ${PCP_LOG_DIR}/pmcd/.

-s file
Specifies the path to a local unix domain socket (for platforms supporting this socket family only).
The default value is ${PCP_RUN_DIR}/pmcd.socket.

-t seconds
Specifies the amount of time, in seconds, before PMCD times out on protocol data unit (PDU)
exchanges with PMDAs. If no time out is specified, the default is five seconds. Setting time out to
zero disables time outs (not recommended, PMDAs should always respond quickly).

The time out may be dynamically modified by storing the number of seconds into the metric
pmcd.control.timeout using pmstore.

-T mask
Specifies whether connection and PDU tracing are turned on for debugging purposes.

See the pmcd(1) man page for complete information on these options.

The default pmcd.options file shipped with PCP is similar to the following:

command-line options to pmcd, uncomment/edit lines as required

longer timeout delay for slow agents
-t 10

suppress timeouts
-t 0

make log go someplace else
-l /some/place/else

debugging knobs, see pmdbg(1)
-D N
-f

Restricting (further) incoming PDU size to prevent DOS attacks
-L 16384

enable event tracing bit fields
1 trace connections
2 trace PDUs
256 unbuffered tracing
-T 3

setting of environment variables for pmcd and
the PCP rc scripts. See pmcd(1) and PMAPI(3).
PMCD_WAIT_TIMEOUT=120

Chapter 2. Installing and Configuring Performance Co-Pilot

20

The most commonly used options have been placed in this file for your convenience. To uncomment
and use an option, simply remove the pound sign (#) at the beginning of the line with the option you
wish to use. Restart pmcd for the change to take effect; that is, as superuser, enter the command:

${PCP_RC_DIR}/pmcd start

2.2.4.2. The pmcd.conf File
When the PMCD is invoked, it reads its configuration file, which is ${PCP_PMCDCONF_PATH}. This
file contains entries that specify the PMDAs used by this instance of the PMCD and which metrics are
covered by these PMDAs. Also, you may specify access control rules in this file for the various hosts,
users and groups on your network. This file is described completely in the pmcd(1) man page.

With standard PCP operation (even if you have not created and added your own PMDAs), you might
need to edit this file in order to add any additional access control you wish to impose. If you do not add
access control rules, all access for all operations is granted to the local host, and read-only access
is granted to remote hosts. The pmcd.conf file is automatically generated during the software build
process and on Linux, for example, is similar to the following:

 Performance Metrics Domain Specifications

This file is automatically generated during the build
Name Id IPC IPC Params File/Cmd
pmcd 2 dso pmcd_init ${PCP_PMDAS_DIR}/pmcd/pmda_pmcd.so
linux 60 dso linux_init ${PCP_PMDAS_DIR}/linux/pmda_linux.so
proc 3 pipe binary ${PCP_PMDAS_DIR}/proc/pmdaproc -d 3
xfs 11 pipe binary ${PCP_PMDAS_DIR}/xfs/pmdaxfs -d 11

[access]
disallow * : store;
allow localhost : all;

Note
Even though PMCD does not run with root privileges, you must be very careful not
to configure PMDAs in this file if you are not sure of their action. This is because all
PMDAs are initially started as root (allowing them to assume alternate identities,
such as postgres for example), after which pmcd drops its privileges. Pay close
attention that permissions on this file are not inadvertently downgraded to allow public
write access.

Each entry in this configuration file contains rules that specify how to connect the PMCD to a particular
PMDA and which metrics the PMDA monitors. A PMDA may be attached as a Dynamic Shared Object
(DSO) or by using a socket or a pair of pipes. The distinction between these attachment methods is
described below.

An entry in the pmcd.conf file looks like this:

label_name domain_number type path

The label_name field specifies a name for the PMDA. The domain_number is an integer value that
specifies a domain of metrics for the PMDA. The type field indicates the type of entry (DSO, socket,
or pipe). The path field is for additional information, and varies according to the type of entry.

PMCD Options and Configuration Files

21

The following rules are common to DSO, socket, and pipe syntax:

label_name
An alphanumeric string identifying the agent.

domain_number
An unsigned integer specifying the agent's domain.

DSO entries follow this syntax:

label_name domain_number dso entry-point path

The following rules apply to the DSO syntax:

dso
The entry type.

entry-point
The name of an initialization function called when the DSO is loaded.

path
Designates the location of the DSO. An absolute path must be used. On most platforms this will be
a so suffixed file, on Windows it is a dll, and on Mac OS X it is a dylib file.

Socket entries in the pmcd.conf file follow this syntax:

label_name domain_number socket addr_family address command [args]

The following rules apply to the socket syntax:

socket
The entry type.

addr_family
Specifies if the socket is AF_INET, AF_IPV6 or AF_UNIX. If the socket is INET, the word inet
appears in this place. If the socket is IPV6, the word ipv6 appears in this place. If the socket is
UNIX, the word unix appears in this place.

address
Specifies the address of the socket. For INET or IPv6 sockets, this is a port number or port name.
For UNIX sockets, this is the name of the PMDA's socket on the local host.

command
Specifies a command to start the PMDA when the PMCD is invoked and reads the configuration
file.

args
Optional arguments for command.

Pipe entries in the pmcd.conf file follow this syntax:

label_name domain_number pipe protocol command [args]

The following rules apply to the pipe syntax:

Chapter 2. Installing and Configuring Performance Co-Pilot

22

pipe
The entry type.

protocol
Specifies whether a text-based or a binary PCP protocol should be used over the pipes.
Historically, this parameter was able to be “text” or “binary.” The text-based protocol has long since
been deprecated and removed, however, so nowadays “binary” is the only valid value here.

command
Specifies a command to start the PMDA when the PMCD is invoked and reads the configuration
file.

args
Optional arguments for command.

2.2.4.3. Controlling Access to PMCD with pmcd.conf
You can place this option extension in the pmcd.conf file to control access to performance metric
data based on hosts, users and groups. To add an access control section, begin by placing the
following line at the end of your pmcd.conf file:

[access]

Below this line, you can add entries of the following forms:

allow hosts hostlist : operations ; disallow hosts hostlist : operations ;
allow users userlist : operations ; disallow users userlist : operations ;
allow groups grouplist : operations ; disallow groups grouplist : operations ;

The keywords users, groups and hosts can be used in either plural or singular form.

The userlist and grouplist fields are comma-separated lists of authenticated users and groups
from the local /etc/passwd and /etc/groups files, NIS (network information service) or LDAP
(lightweight directory access protocol) service.

The hostlist is a comma-separated list of host identifiers; the following rules apply:

• Host names must be in the local system's /etc/hosts file or known to the local DNS (domain
name service).

• IP and IPv6 addresses may be given in the usual numeric notations.

• A wildcarded IP or IPv6 address may be used to specify groups of hosts, with the single wildcard
character * as the last-given component of the address. The wildcard .* refers to all IP (IPv4)
addresses. The wildcard :* refers to all IPv6 addresses. If an IPv6 wildcard contains a :: component,
then the final * refers to the final 16 bits of the address only, otherwise it refers to the remaining
unspecified bits of the address.

The wildcard ``*'' refers to all users, groups or host addresses. Names of users, groups or hosts may
not be wildcarded.

For example, the following hostlist entries are all valid:

babylon

Managing Optional PMDAs

23

babylon.acme.com
123.101.27.44
localhost
155.116.24.*
192.*
.*
fe80::223:14ff:feaf:b62c
fe80::223:14ff:feaf:*
fe80:*
:*
*

The operations field can be any of the following:

• A comma-separated list of the operation types described below.

• The word all to allow or disallow all operations as specified in the first field.

• The words all except and a list of operations. This entry allows or disallows all operations as
specified in the first field except those listed.

• The phrase maximum N connections to set an upper bound (N) on the number of connections an
individual host, user or group of users may make. This can only be added to the operations list of
an allow statement.

The operations that can be allowed or disallowed are as follows:

fetch
Allows retrieval of information from the PMCD. This may be information about a metric (such as a
description, instance domain, or help text) or an actual value for a metric.

store
Allows the PMCD to store metric values in PMDAs that permit store operations. Be cautious in
allowing this operation, because it may be a security opening in large networks, although the
PMDAs shipped with the PCP package typically reject store operations, except for selected
performance metrics where the effect is benign.

For example, here is a sample access control portion of a ${PCP_PMCDCONF_PATH} file:

allow hosts babylon, moomba : all ;
disallow user sam : all ;
allow group dev : fetch ;
allow hosts 192.127.4.* : fetch ;
disallow host gate-inet : store ;

Complete information on access control syntax rules in the pmcd.conf file can be found in the
pmcd(1) man page.

2.3. Managing Optional PMDAs
Some Performance Metrics Domain Agents (PMDAs) shipped with Performance Co-Pilot (PCP)
are designed to be installed and activated on every collector host, for example, linux, windows,
darwin, pmcd, and process PMDAs.

Other PMDAs are designed for optional activation and require some user action to make them
operational. In some cases these PMDAs expect local site customization to reflect the operational

Chapter 2. Installing and Configuring Performance Co-Pilot

24

environment, the system configuration, or the production workload. This customization is typically
supported by interactive installation scripts for each PMDA.

Each PMDA has its own directory located below ${PCP_PMDAS_DIR}. Each directory contains a
Remove script to unconfigure the PMDA, remove the associated metrics from the PMNS, and restart
the pmcd daemon; and an Install script to install the PMDA, update the PMNS, and restart the
PMCD daemon.

As a shortcut mechanism to support automated PMDA installation, a file named .NeedInstall can
be created in a PMDA directory below ${PCP_PMDAS_DIR}. The next restart of PCP services will
invoke that PMDAs installation automatically, with default options taken.

2.3.1. PMDA Installation on a PCP Collector Host
To install a PMDA you must perform a collector installation for each host on which the PMDA is
required to export performance metrics. PCP provides a distributed metric namespace (PMNS) and
metadata, so it is not necessary to install PMDAs (with their associated PMNS) on PCP monitor hosts.

You need to update the PMNS, configure the PMDA, and notify PMCD. The Install script for each
PMDA automates these operations, as follows:

1. Log in as root (the superuser).

2. Change to the PMDA's directory as shown in the following example:

cd ${PCP_PMDAS_DIR}/cisco

3. In the unlikely event that you wish to use a non-default Performance Metrics Domain (PMD)
assignment, determine the current PMD assignment:

cat domain.h

Check that there is no conflict in the PMDs as defined in ${PCP_VAR_DIR}/pmns/stdpmid
and the other PMDAs currently in use (listed in ${PCP_PMCDCONF_PATH}). Edit domain.h to
assign the new domain number if there is a conflict (this is highly unlikely to occur in a regular PCP
installation).

4. Enter the following command:

./Install

You may be prompted to enter some local parameters or configuration options. The script applies
all required changes to the control files and to the PMNS, and then notifies PMCD. Example 2.1,
“PMNS Installation Output ” is illustrative of the interactions:

You will need to choose an appropriate configuration for
installation of the “cisco” Performance Metrics Domain Agent (PMDA).

 collector collect performance statistics on this system
 monitor allow this system to monitor local and/or remote systems
 both collector and monitor configuration for this system

Please enter c(ollector) or m(onitor) or b(oth) [b] collector

PMDA Removal on a PCP Collector Host

25

Cisco hostname or IP address? [return to quit] wanmelb

A user-level password may be required for Cisco “show int” command.
 If you are unsure, try the command
 $ telnet wanmelb
 and if the prompt “Password:” appears, a user-level password is
 required; otherwise answer the next question with an empty line.

User-level Cisco password? ********
Probing Cisco for list of interfaces ...

Enter interfaces to monitor, one per line in the format
tX where “t” is a type and one of “e” (Ethernet), or “f” (Fddi), or
“s” (Serial), or “a” (ATM), and “X” is an interface identifier
which is either an integer (e.g. 4000 Series routers) or two
integers separated by a slash (e.g. 7000 Series routers).

The currently unselected interfaces for the Cisco “wanmelb” are:
 e0 s0 s1
Enter “quit” to terminate the interface selection process.
Interface? [e0] s0

The currently unselected interfaces for the Cisco “wanmelb” are:
 e0 s1
Enter “quit” to terminate the interface selection process.
Interface? [e0] s1

The currently unselected interfaces for the Cisco “wanmelb” are:
 e0
Enter “quit” to terminate the interface selection process.
Interface? [e0] quit

Cisco hostname or IP address? [return to quit]
Updating the Performance Metrics Name Space (PMNS) ...
Installing pmchart view(s) ...
Terminate PMDA if already installed ...
Installing files ...
Updating the PMCD control file, and notifying PMCD ...
Check cisco metrics have appeared ... 5 metrics and 10 values

Example 2.1. PMNS Installation Output

2.3.2. PMDA Removal on a PCP Collector Host
To remove a PMDA, you must perform a collector removal for each host on which the PMDA is
currently installed.

The PMNS needs to be updated, the PMDA unconfigured, and PMCD notified. The Remove script for
each PMDA automates these operations, as follows:

1. Log in as root (the superuser).

2. Change to the PMDA's directory as shown in the following example:

cd ${PCP_PMDAS_DIR}/elasticsearch

3. Enter the following command:

./Remove

Chapter 2. Installing and Configuring Performance Co-Pilot

26

The following output illustrates the result:

Culling the Performance Metrics Name Space ...
elasticsearch ... done
Updating the PMCD control file, and notifying PMCD ...
Removing files ...
Check elasticsearch metrics have gone away ... OK

2.4. Troubleshooting
The following sections offer troubleshooting advice on the Performance Metrics Name Space (PMNS),
missing and incomplete values for performance metrics, kernel metrics and the PMCD.

Advice for troubleshooting the archive logging system is provided in Chapter 6, Archive Logging.

2.4.1. Performance Metrics Name Space
To display the active PMNS, use the pminfo command; see the pminfo(1) man page.

The PMNS at the collector host is updated whenever a PMDA is installed or removed, and may
also be updated when new versions of PCP are installed. During these operations, the PMNS is
typically updated by merging the (plaintext) namespace components from each installed PMDA. These
separate PMNS components reside in the ${PCP_VAR_DIR}/pmns directory and are merged into the
root file there.

2.4.2. Missing and Incomplete Values for Performance Metrics
Missing or incomplete performance metric values are the result of their unavailability.

2.4.2.1. Metric Values Not Available
The following symptom has a known cause and resolution:

Symptom:
Values for some or all of the instances of a performance metric are not available.

Cause:
This can occur as a consequence of changes in the installation of modules (for example, a DBMS
or an application package) that provide the performance instrumentation underpinning the PMDAs.
Changes in the selection of modules that are installed or operational, along with changes in the
version of these modules, may make metrics appear and disappear over time.

In simple terms, the PMNS contains a metric name, but when that metric is requested, no PMDA
at the collector host supports the metric.

For archive logs, the collection of metrics to be logged is a subset of the metrics available, so
utilities replaying from a PCP archive log may not have access to all of the metrics available from
a live (PMCD) source.

Resolution:
Make sure the underlying instrumentation is available and the module is active. Ensure that the
PMDA is running on the host to be monitored. If necessary, create a new archive log with a wider
range of metrics to be logged.

Kernel Metrics and the PMCD

27

2.4.3. Kernel Metrics and the PMCD
The following issues involve the kernel metrics and the PMCD:

• Cannot connect to remote PMCD

• PMCD not reconfiguring after hang-up

• PMCD does not start

2.4.3.1. Cannot Connect to Remote PMCD
The following symptom has a known cause and resolution:

Symptom:
A PCP client tool (such as pmchart, pmie, or pmlogger) complains that it is unable to connect
to a remote PMCD (or establish a PMAPI context), but you are sure that PMCD is active on the
remote host.

Cause:
To avoid hanging applications for the duration of TCP/IP time outs, the PMAPI library implements
its own time out when trying to establish a connection to a PMCD. If the connection to the host is
over a slow network, then successful establishment of the connection may not be possible before
the time out, and the attempt is abandoned.

Alternatively, there may be a firewall in-between the client tool and PMCD which is blocking the
connection attempt.

Resolution:
Establish that the PMCD on far-away-host is really alive, by connecting to its control port (TCP
port number 44321 by default):

telnet far-away-host 44321

This response indicates the PMCD is not running and needs restarting:

Unable to connect to remote host: Connection refused

To restart the PMCD on that host, enter the following command:

${PCP_RC_DIR}/pmcd start

This response indicates the PMCD is running:

Connected to far-away-host

Interrupt the telnet session, increase the PMAPI time out by setting the
PMCD_CONNECT_TIMEOUT environment variable to some number of seconds (60 for instance),
and try the PCP client tool again.

If these techniques are ineffective, it is likely an intermediary firewall is blocking the client from
accessing the PMCD port - resolving such issues is firewall-host platform-specific and cannot
practically be covered here.

Chapter 2. Installing and Configuring Performance Co-Pilot

28

2.4.3.2. PMCD Not Reconfiguring after SIGHUP
The following symptom has a known cause and resolution:

Symptom
PMCD does not reconfigure itself after receiving the SIGHUP signal.

Cause:
If there is a syntax error in ${PCP_PMCDCONF_PATH}, PMCD does not use the contents of the
file. This can lead to situations in which the configuration file and PMCD's internal state do not
agree.

Resolution:
Always monitor PMCD's log. For example, use the following command in another window when
reconfiguring PMCD, to watch errors occur:

tail -f ${PCP_LOG_DIR}/pmcd/pmcd.log

2.4.3.3. PMCD Does Not Start
The following symptom has a known cause and resolution:

Symptom:
If the following messages appear in the PMCD log (${PCP_LOG_DIR}/pmcd/pmcd.log),
consider the cause and resolution:

pcp[27020] Error: OpenRequestSocket(44321) bind: Address already in
use
pcp[27020] Error: pmcd is already running
pcp[27020] Error: pmcd not started due to errors!

Cause:
PMCD is already running or was terminated before it could clean up properly. The error occurs
because the socket it advertises for client connections is already being used or has not been
cleared by the kernel.

Resolution:
Start PMCD as root (superuser) by typing:

${PCP_RC_DIR}/pmcd start

Any existing PMCD is shut down, and a new one is started in such a way that the symptomatic
message should not appear.

If you are starting PMCD this way and the symptomatic message appears, a problem has
occurred with the connection to one of the deceased PMCD's clients.

This could happen when the network connection to a remote client is lost and PMCD is
subsequently terminated. The system may attempt to keep the socket open for a time to allow the
remote client a chance to reestablish the connection and read any outstanding data.

The only solution in these circumstances is to wait until the socket times out and the kernel deletes
it. This netstat command displays the status of the socket and any connections:

Kernel Metrics and the PMCD

29

netstat -ant | grep 44321

If the socket is in the FIN_WAIT or TIME_WAIT state, then you must wait for it to be deleted.
Once the command above produces no output, PMCD may be restarted. Less commonly, you
may have another program running on your system that uses the same Internet port number
(44321) that PMCD uses.

Refer to the PCPIntro(1) man page for a description of how to override the default PMCD port
assignment using the PMCD_PORT environment variable.

30

Chapter 3.

31

Common Conventions and Arguments
This chapter deals with the user interface components that are common to most text-based utilities
that make up the monitor portion of Performance Co-Pilot (PCP). These are the major sections in this
chapter:

• Section 3.1, “Alternate Metrics Source Options”, details some basic standards used in the
development of PCP tools.

• Section 3.2, “General PCP Tool Options”, details other options to use with PCP tools.

• Section 3.3, “Time Duration and Control”, describes the time control dialog and time-related
command line options available for use with PCP tools.

• Section 3.4, “PCP Environment Variables”, describes the environment variables supported by PCP
tools.

• Section 3.5, “Running PCP Tools through a Firewall”, describes how to execute PCP tools that must
retrieve performance data from the Performance Metrics Collection Daemon (PMCD) on the other
side of a TCP/IP security firewall.

• Section 3.6, “Transient Problems with Performance Metric Values ”, covers some uncommon
scenarios that may compromise performance metric integrity over the short term.

Many of the utilities provided with PCP conform to a common set of naming and syntactic conventions
for command line arguments and options. This section outlines these conventions and their meaning.
The options may be generally assumed to be honored for all utilities supporting the corresponding
functionality.

In all cases, the man pages for each utility fully describe the supported command arguments and
options.

Command line options are also relevant when starting PCP applications from the desktop using the
Alt double-click method. This technique launches the pmrun program to collect additional arguments
to pass along when starting a PCP application.

3.1. Alternate Metrics Source Options
The default source of performance metrics is from PMCD on the local host. This default pmcd
connection will be made using the Unix domain socket, if the platform supports that, else a localhost
Inet socket connection is made. This section describes how to obtain metrics from sources other than
this default.

3.1.1. Fetching Metrics from Another Host
The option -h host directs any PCP utility (such as pmchart or pmie) to make a connection with
the PMCD instance running on host. Once established, this connection serves as the principal
real-time source of performance metrics and metadata. The host specification may be more than
a simple host name or address - it can also contain decorations specifying protocol type (secure or
not), authentication information, and other connection attributes. Refer to the PCPIntro(1) man
page for full details of these, and examples of use of these specifications can also be found in the PCP
Tutorials and Case Studies companion document.

Chapter 3. Common Conventions and Arguments

32

3.1.2. Fetching Metrics from an Archive Log
The option -a archive directs the utility to treat the PCP archive logs with base name archive as
the principal source of performance metrics and metadata.

PCP archive logs are created with pmlogger. Most PCP utilities operate with equal facility for
performance information coming from either a real-time feed via PMCD on some host, or for historical
data from a PCP archive log. For more information on archive logs and their use, see Chapter 6,
Archive Logging.

The base name (archive) of the PCP archive log used with the -a option implies the existence of the
files created automatically by pmlogger, as listed in Table 3.1, “Physical Filenames for Components
of a PCP Archive Log”.

Filename Contents

archive. index Temporal index for rapid access to archive contents

archive. meta Metadata descriptions for performance metrics and instance domains
appearing in the archive

archive.N Volumes of performance metrics values, for N = 0,1,2,...

Table 3.1. Physical Filenames for Components of a PCP Archive Log

Some tools are able to concurrently process multiple PCP archive logs (for example, for retrospective
analysis of performance across multiple hosts), and accept either multiple -a options or a comma
separated list of archive names following the -a option.

Note
The -h and -a options are almost always mutually exclusive. Currently, pmchart is
the exception to this rule but other tools may continue to blur this line in the future.

3.2. General PCP Tool Options
The following sections provide information relevant to most of the PCP tools. It is presented here in a
single place for convenience.

3.2.1. Common Directories and File Locations
The following files and directories are used by the PCP tools as repositories for option and
configuration files and for binaries:

${PCP_DIR}/etc/pcp.env
Script to set PCP run-time environment variables.

${PCP_DIR}/etc/pcp.conf
PCP configuration and environment file.

${PCP_PMCDCONF_PATH}
Configuration file for Performance Metrics Collection Daemon (PMCD). Sets environment
variables, including PATH.

${PCP_BINADM_DIR}/pmcd
The PMCD binary.

Alternate Performance Metric Name Spaces

33

${PCP_PMCDOPTIONS_PATH}
Command line options for PMCD.

${PCP_RC_DIR}/pmcd
The PMCD startup script.

${PCP_BIN_DIR}/pcptool
Directory containing PCP tools such as pmstat , pminfo, pmlogger, pmlogsummary,
pmchart, pmie, and so on.

${PCP_SHARE_DIR}
Directory containing shareable PCP-specific files and repository directories such as bin, demos,
examples and lib.

${PCP_VAR_DIR}
Directory containing non-shareable (that is, per-host) PCP specific files and repository directories.

${PCP_BINADM_DIR}/pcptool
PCP tools that are typically not executed directly by the end user such as pmcd_wait.

${PCP_SHARE_DIR}/lib/pcplib
Miscellaneous PCP libraries and executables.

${PCP_PMDAS_DIR}
Performance Metric Domain Agents (PMDAs), one directory per PMDA.

${PCP_VAR_DIR}/config
Configuration files for PCP tools, typically with one directory per tool.

${PCP_DEMOS_DIR}
Demonstration data files and example programs.

${PCP_LOG_DIR}
By default, diagnostic and trace log files generated by PMCD and PMDAs. Also, the PCP archive
logs are managed in one directory per logged host below here.

${PCP_VAR_DIR}/pmns
Files and scripts for the Performance Metrics Name Space (PMNS).

3.2.2. Alternate Performance Metric Name Spaces
The Performance Metrics Name Space (PMNS) defines a mapping from a collection of human-
readable names for performance metrics (convenient to the user) into corresponding internal
identifiers (convenient for the underlying implementation).

The distributed PMNS used in PCP avoids most requirements for an alternate PMNS, because clients'
PMNS operations are supported at the Performance Metrics Collection Daemon (PMCD) or by means
of PMNS data in a PCP archive log. The distributed PMNS is the default, but alternates may be
specified using the -n namespace argument to the PCP tools. When a PMNS is maintained on a
host, it is likely to reside in the ${PCP_VAR_DIR}/pmns directory.

Chapter 3. Common Conventions and Arguments

34

3.3. Time Duration and Control
The periodic nature of sampling performance metrics and refreshing the displays of the PCP tools
makes specification and control of the temporal domain a common operation. In the following sections,
the services and conventions for specifying time positions and intervals are described.

3.3.1. Performance Monitor Reporting Frequency and Duration
Many of the performance monitoring utilities have periodic reporting patterns. The -t interval
and -s samples options are used to control the sampling (reporting) interval, usually expressed as a
real number of seconds (interval), and the number of samples to be reported, respectively. In the
absence of the -s flag, the default behavior is for the performance monitoring utilities to run until they
are explicitly stopped.

The interval argument may also be expressed in terms of minutes, hours, or days, as described in
the PCPIntro(1) man page.

3.3.2. Time Window Options
The following options may be used with most PCP tools (typically when the source of the performance
metrics is a PCP archive log) to tailor the beginning and end points of a display, the sample origin, and
the sample time alignment to your convenience.

The -S, -T, -O and -A command line options are used by PCP applications to define a time window of
interest.

-S duration
The start option may be used to request that the display start at the nominated time. By default,
the first sample of performance data is retrieved immediately in real-time mode, or coincides with
the first sample of data in a PCP archive log in archive mode. For archive mode, the -S option
may be used to specify a later time for the start of sampling. By default, if duration is an integer,
the units are assumed to be seconds.

To specify an offset from the beginning of a PCP archive (in archive mode) simply specify the
offset as the duration. For example, the following entry retrieves the first sample of data at
exactly 30 minutes from the beginning of a PCP archive.

-S 30min

To specify an offset from the end of a PCP archive, prefix the duration with a minus sign. In
this case, the first sample time precedes the end of archived data by the given duration. For
example, the following entry retrieves the first sample exactly one hour preceding the last sample
in a PCP archive.

-S -1hour

To specify the calendar date and time (local time in the reporting timezone) for the first sample,
use the ctime(3) syntax preceded by an “at” sign (@). For example, the following entry specifies
the date and time to be used.

-S '@ Mon Mar 4 13:07:47 2013'

Time Window Options

35

Note that this format corresponds to the output format of the date command for easy “cut and
paste.” However, be sure to enclose the string in quotes so it is preserved as a single argument for
the PCP tool.

For more complete information on the date and time syntax, see the PCPIntro(1) man page.

-T duration
The terminate option may be used to request that the display stop at the time designated by
duration. By default, the PCP tools keep sampling performance data indefinitely (in real-time
mode) or until the end of a PCP archive (in archive mode). The -T option may be used to specify
an earlier time to terminate sampling.

The interpretation for the duration argument in a -T option is the same as for the -S option,
except for an unsigned time interval that is interpreted as being an offset from the start of the
time window as defined by the default (now for real time, else start of archive) or by a -S option.
For example, these options define a time window that spans 45 minutes, after an initial offset (or
delay) of 1 hour:

-S 1hour -T 45mins

-O duration
By default, samples are fetched from the start time (see the description of the -S option) to the
terminate time (see the description of the -T option). The offset -O option allows the specification
of a time between the start time and the terminate time where the tool should position its initial
sample time. This option is useful when initial attention is focused at some point within a larger
time window of interest, or when one PCP tool wishes to launch another PCP tool with a common
current point of time within a shared time window.

The duration argument accepted by -O conforms to the same syntax and semantics as the
duration argument for -T. For example, these options specify that the initial position should be
the end of the time window:

-O -0

This is most useful with the pmchart command to display the tail-end of the history up to the end
of the time window.

-A alignment
By default, performance data samples do not necessarily happen at any natural unit of measured
time. The -A switch may be used to force the initial sample to be on the specified alignment. For
example, these three options specify alignment on seconds, half hours, and whole hours:

-A 1sec
-A 30min
-A 1hour

The -A option advances the time to achieve the desired alignment as soon as possible after
the start of the time window, whether this is the default window, or one specified with some
combination of -A and -O command line options.

Obviously the time window may be overspecified by using multiple options from the set -t, -s, -S, -T,
-A, and -O. Similarly, the time window may shrink to nothing by injudicious choice of options.

Chapter 3. Common Conventions and Arguments

36

In all cases, the parsing of these options applies heuristics guided by the principal of “least surprise”;
the time window is always well-defined (with the end never earlier than the start), but may shrink to
nothing in the extreme.

3.3.3. Timezone Options
All utilities that report time of day use the local timezone by default. The following timezone options are
available:

-z
Forces times to be reported in the timezone of the host that provided the metric values (the PCP
collector host). When used in conjunction with -a and multiple archives, the convention is to use
the timezone from the first named archive.

-Z timezone
Sets the TZ variable to a timezone string, as defined in environ(7), for example, -Z UTC for
universal time.

3.4. PCP Environment Variables
When you are using PCP tools and utilities and are calling PCP library functions, a standard set
of defined environment variables are available in the ${PCP_DIR}/etc/pcp.conf file. These
variables are generally used to specify the location of various PCP pieces in the file system and may
be loaded into shell scripts by sourcing the ${PCP_DIR}/etc/pcp.env shell script. They may also
be queried by C, C++, perl and python programs using the pmGetConfig library function. If a variable
is already defined in the environment, the values in the pcp.conf file do not override those values;
that is, the values in pcp.conf serve only as installation defaults. For additional information, see the
pcp.conf(5), pcp.env(5), and pmGetConfig(3) man pages.

The following environment variables are recognized by PCP (these definitions are also available on
the PCPIntro(1) man page):

PCP_COUNTER_WRAP
Many of the performance metrics exported from PCP agents expect that counters increase
monotonically. Under some circumstances, one value of a metric may be smaller than the
previously fetched value. This can happen when a counter of finite precision overflows, when the
PCP agent has been reset or restarted, or when the PCP agent exports values from an underlying
instrumentation that is subject to asynchronous discontinuity.

If set, the PCP_COUNTER_WRAP environment variable indicates that all such cases of a decreasing
counter should be treated as a counter overflow; and hence the values are assumed to have
wrapped once in the interval between consecutive samples. Counter wrapping was the default in
versions before the PCP release 1.3.

PCP_STDERR
Specifies whether pmprintf() error messages are sent to standard error, an pmconfirm dialog
box, or to a named file; see the pmprintf(3) man page. Messages go to standard error if
PCP_STDERR is unset or set without a value. If this variable is set to DISPLAY, then messages
go to an pmconfirm dialog box; see the pmconfirm(1) man page. Otherwise, the value of
PCP_STDERR is assumed to be the name of an output file.

Running PCP Tools through a Firewall

37

PMCD_CONNECT_TIMEOUT
When attempting to connect to a remote PMCD on a system that is booting or at the other end
of a slow network link, some PMAPI routines could potentially block for a long time until the
remote system responds. These routines abort and return an error if the connection has not been
established after some specified interval has elapsed. The default interval is 5 seconds. This
may be modified by setting this variable in the environment to a larger number of seconds for
the desired time out. This is most useful in cases where the remote host is at the end of a slow
network, requiring longer latencies to establish the connection correctly.

PMCD_PORT
This TCP/IP port is used by PMCD to create the socket for incoming connections and requests.
The default is port number 44321, which you may override by setting this variable to a different
port number. If a non-default port is in effect when PMCD is started, then every monitoring
application connecting to that PMCD must also have this variable set in its environment before
attempting a connection.

PMCD_RECONNECT_TIMEOUT
When a monitor or client application loses its connection to a PMCD, the connection may be
reestablished by calling the pmReconnectContext(3) PMAPI function. However, attempts to
reconnect are controlled by a back-off strategy to avoid flooding the network with reconnection
requests. By default, the back-off delays are 5, 10, 20, 40, and 80 seconds for consecutive
reconnection requests from a client (the last delay is repeated for any further attempts after the
last delay in the list). Setting this environment variable to a comma-separated list of positive
integers redefines the back-off delays. For example, setting the delays to 1,2 will back off for 1
second, then back off every 2 seconds thereafter.

PMCD_REQUEST_TIMEOUT
For monitor or client applications connected to PMCD, there is a possibility of the application
hanging on a request for performance metrics or metadata or help text. These delays may become
severe if the system running PMCD crashes or the network connection is lost or the network link
is very slow. By setting this environment variable to a real number of seconds, requests to PMCD
timeout after the specified number of seconds. The default behavior is to wait 10 seconds for a
response from every PMCD for all applications.

PMLOGGER_PORT
This environment variable may be used to change the base TCP/IP port number used by
pmlogger to create the socket to which pmlc instances try to connect. The default base port
number is 4330. If used, this variable should be set in the environment before pmlogger is
executed. If pmlc and pmlogger are on different hosts, then obviously PMLOGGER_PORT must be
set to the same value in both places.

PMPROXY_PORT
This environment variable may be used to change the base TCP/IP port number used by
pmproxy to create the socket to which proxied clients connect, on their way to a distant pmcd.

3.5. Running PCP Tools through a Firewall
In some production environments, the Performance Co-Pilot (PCP) monitoring hosts are on one side
of a TCP/IP firewall, and the PCP collector hosts may be on the other side.

If the firewall service sits between the monitor and collector tools, the pmproxy service may be used
to perform both packet forwarding and DNS proxying through the firewall; see the pmproxy(1) man

Chapter 3. Common Conventions and Arguments

38

page. Otherwise, it is necessary to arrange for packet forwarding to be enabled for those TCP/IP ports
used by PCP, namely 44321 (or the value of the PMCD_PORT environment variable) for connections to
PMCD.

3.5.1. The pmproxy service
The pmproxy service allows PCP clients running on hosts located on one side of a firewall to monitor
remote hosts on the other side. The basic connection syntax is as follows, where tool is an arbitrary
PCP application, typically a monitoring tool:

pmprobe -h remotehost@proxyhost

This extended host specification syntax is part of a larger set of available extensions to the basic host
naming syntax - refer to the PCPIntro(1) man page for further details.

3.6. Transient Problems with Performance Metric Values
Sometimes the values for a performance metric as reported by a PCP tool appear to be incorrect. This
is typically caused by transient conditions such as metric wraparound or time skew, described below.
These conditions result from design decisions that are biased in favor of lightweight protocols and
minimal resource demands for PCP components.

In all cases, these events are expected to occur infrequently, and should not persist beyond a few
samples.

3.6.1. Performance Metric Wraparound
Performance metrics are usually expressed as numbers with finite precision. For metrics that are
cumulative counters of events or resource consumption, the value of the metric may occasionally
overflow the specified range and wraparound to zero.

Because the value of these counter metrics is computed from the rate of change with respect to the
previous sample, this may result in a transient condition where the rate of change is an unknown
value. If the PCP_COUNTER_WRAP environment variable is set, this condition is treated as an overflow,
and speculative rate calculations are made. In either case, the correct rate calculation for the metric
returns with the next sample.

3.6.2. Time Dilation and Time Skew
If a PMDA is tardy in returning results, or the PCP monitoring tool is connected to PMCD via a slow or
congested network, an error might be introduced in rate calculations due to a difference between the
time the metric was sampled and the time PMCD sends the result to the monitoring tool.

In practice, these errors are usually so small as to be insignificant, and the errors are self-correcting
(not cumulative) over consecutive samples.

A related problem may occur when the system time is not synchronized between multiple hosts,
and the time stamps for the results returned from PMCD reflect the skew in the system times. In this
case, it is recommended that NTP (network time protocol) be used to keep the system clocks on the
collector systems synchronized; for information on NTP refer to the ntpd(1) man page.

Chapter 4.

39

Monitoring System Performance
This chapter describes the performance monitoring tools available in Performance Co-Pilot (PCP).
This product provides a group of commands and tools for measuring system performance. Each tool is
described completely by its own man page. The man pages are accessible through the man command.
For example, the man page for the tool pmdumptext is viewed by entering the following command:

man pmdumptext

The following major sections are covered in this chapter:

• Section 4.1, “The pmstat Command”, discusses pmstat, a utility that provides a periodic one-line
summary of system performance.

• Section 4.2, “The pmdumptext Command”, discusses pmdumptext, a utility that shows the current
values for named performance metrics.

• Section 4.3, “The pmval Command”, describes pmval, a utility that displays performance metrics in
a textual format.

• Section 4.4, “The pminfo Command”, describes pminfo, a utility that displays information about
performance metrics.

• Section 4.5, “The pmstore Command”, describes the use of the pmstore utility to arbitrarily set or
reset selected performance metric values.

The following sections describe the various graphical and text-based PCP tools used to monitor local
or remote system performance.

4.1. The pmstat Command
The pmstat command provides a periodic, one-line summary of system performance. This command
is intended to monitor system performance at the highest level, after which other tools may be used
for examining subsystems to observe potential performance problems in greater detail. After entering
the pmstat command, you see output similar to the following, with successive lines appearing
periodically:

pmstat
@ Thu Aug 15 09:25:56 2013
 loadavg memory swap io system cpu
 1 min swpd free buff cache pi po bi bo in cs us sy id
 1.29 833960 5614m 144744 265824 0 0 0 1664 13K 23K 6 7 81
 1.51 833956 5607m 144744 265712 0 0 0 1664 13K 24K 5 7 83
 1.55 833956 5595m 145196 271908 0 0 14K 1056 13K 24K 7 7 74

An additional line of output is added every five seconds. The -t interval option may be used to
vary the update interval (i.e. the sampling interval).

The output from pmstat is directed to standard output, and the columns in the report are interpreted
as follows:

loadavg
The 1-minute load average (runnable processes).

Chapter 4. Monitoring System Performance

40

memory
The swpd column indicates average swap space used during the interval (all columns reported in
Kbytes unless otherwise indicated). The free column indicates average free memory during the
interval. The buff column indicates average buffer memory in use during the interval. The cache
column indicates average cached memory in use during the interval.

swap
Reports the average number of pages that are paged-in (pi) and paged-out (po) per second
during the interval. It is normal for the paged-in values to be non-zero, but the system is suffering
memory stress if the paged-out values are non-zero over an extended period.

io
The bi and bo columns indicate the average rate per second of block input and block output
operations respectfully, during the interval. These rates are independent of the I/O block size. If
the values become large, they are reported as thousands of operations per second (K suffix) or
millions of operations per second (M suffix).

system
Context switch rate (cs) and interrupt rate (in). Rates are expressed as average operations per
second during the interval. Note that the interrupt rate is normally at least HZ (the clock interrupt
rate, and kernel.all.hz metric) interrupts per second.

cpu
Percentage of CPU time spent executing user code (us), system and interrupt code (sy), idle loop
(id).

As with most PCP utilities, real-time metric, and archive logs are interchangeable.

For example, the following command uses a local system PCP archive log 20130731 and the
timezone of the host (smash) from which performance metrics in the archive were collected:

pmstat -a ${PCP_LOG_DIR}/pmlogger/smash/20130731 -t 2hour -A 1hour -z
Note: timezone set to local timezone of host "smash"
@ Wed Jul 31 10:00:00 2013
 loadavg memory swap io system cpu
 1 min swpd free buff cache pi po bi bo in cs us sy id
 3.90 24648 6234m 239176 2913m ? ? ? ? ? ? ? ? ?
 1.72 24648 5273m 239320 2921m 0 0 4 86 11K 19K 5 5 84
 3.12 24648 5194m 241428 2969m 0 0 0 84 10K 19K 5 5 85
 1.97 24644 4945m 244004 3146m 0 0 0 84 10K 19K 5 5 84
 3.82 24640 4908m 244116 3147m 0 0 0 83 10K 18K 5 5 85
 3.38 24620 4860m 244116 3148m 0 0 0 83 10K 18K 5 4 85
 2.89 24600 4804m 244120 3149m 0 0 0 83 10K 18K 5 4 85
pmFetch: End of PCP archive log

For complete information on pmstat usage and command line options, see the pmstat(1) man
page.

4.2. The pmdumptext Command
The pmdumptext command displays performance metrics in ASCII tables, suitable for export into
databases or report generators. It is a flexible command. For example, the following command
provides continuous memory statistics on a host named surf:

pmdumptext -Ximu -h surf -f '%H:%M:%S' xfs.buffer

The pmval Command

41

[1] xfs.buffer.get
[2] xfs.buffer.create
[3] xfs.buffer.get_locked
[4] xfs.buffer.get_locked_waited
[5] xfs.buffer.busy_locked
[6] xfs.buffer.miss_locked
[7] xfs.buffer.page_retries
[8] xfs.buffer.page_found
[9] xfs.buffer.get_read

 Column 1 2 3 4 5 6 7 8 9
 Metric get create locked waited locked locked etries _found t_read
 Units c/s c/s c/s c/s c/s c/s c/s c/s c/s
10:13:23 ? ? ? ? ? ? ? ? ?
10:13:24 0.16K 9.00 0.15K 5.00 0.00 0.00 0.00 12.00 9.00
10:13:25 1.21K 38.00 1.17K 15.00 0.00 0.00 0.00 62.01 38.00
10:13:26 5.80K 0.12K 5.69K 41.99 0.00 0.00 0.00 0.19K 0.12K

See the pmdumptext(1) man page for more information.

4.3. The pmval Command
The pmval command dumps the current values for the named performance metrics. For example,
the following command reports the value of performance metric proc.nprocs once per second (by
default), and produces output similar to this:

pmval proc.nprocs
metric: proc.nprocs
host: localhost
semantics: discrete instantaneous value
units: none
samples: all
interval: 1.00 sec
 81
 81
 82
 81

In this example, the number of running processes was reported once per second.

Where the semantics of the underlying performance metrics indicate that it would be sensible, pmval
reports the rate of change or resource utilization.

For example, the following command reports idle processor utilization for each of four CPUs on the
remote host dove, each five seconds apart, producing output of this form:

pmval -h dove -t 5sec -s 4 kernel.percpu.cpu.idle
metric: kernel.percpu.cpu.idle
host: dove
semantics: cumulative counter (converting to rate)
units: millisec (converting to time utilization)
samples: 4
interval: 5.00 sec

cpu:1.1.0.a cpu:1.1.0.c cpu:1.1.1.a cpu:1.1.1.c
 1.000 0.9998 0.9998 1.000
 1.000 0.9998 0.9998 1.000
 0.8989 0.9987 0.9997 0.9995
 0.9568 0.9998 0.9996 1.000

Chapter 4. Monitoring System Performance

42

Similarly, the following command reports disk I/O read rate every minute for just the disk /dev/
disk1, and produces output similar to the following:

pmval -t 1min -i disk1 disk.dev.read
metric: disk.dev.read
host: localhost
semantics: cumulative counter (converting to rate)
units: count (converting to count / sec)
samples: indefinite
interval: 60.00 sec
 disk1
 33.67
 48.71
 52.33
 11.33
 2.333

The -r flag may be used to suppress the rate calculation (for metrics with counter semantics) and
display the raw values of the metrics.

In the example below, manipulation of the time within the archive is achieved by the exchange of time
control messages between pmval and pmtime.

pmval -g -a ${PCP_LOG_DIR}/pmlogger/myserver/20130731 kernel.all.load

The pmval command is documented by the pmval(1) man page, and annotated examples of the
use of pmval can be found in the PCP Tutorials and Case Studies companion document.

4.4. The pminfo Command
The pminfo command displays various types of information about performance metrics available
through the Performance Co-Pilot (PCP) facilities.

The -T option is extremely useful; it provides help text about performance metrics:

pminfo -T mem.util.cached
mem.util.cached
Help:
Memory used by the page cache, including buffered file data.
This is in-memory cache for files read from the disk (the pagecache)
but doesn't include SwapCached.

The -t option displays the one-line help text associated with the selected metrics. The -T option
prints more verbose help text.

Without any options, pminfo verifies that the specified metrics exist in the namespace, and echoes
those names. Metrics may be specified as arguments to pminfo using their full metric names. For
example, this command returns the following response:

pminfo hinv.ncpu network.interface.total.bytes
hinv.ncpu
network.interface.total.bytes

A group of related metrics in the namespace may also be specified. For example, to list all of the hinv
metrics you would use this command:

pminfo hinv

The pminfo Command

43

hinv.physmem
hinv.pagesize
hinv.ncpu
hinv.ndisk
hinv.nfilesys
hinv.ninterface
hinv.nnode
hinv.machine
hinv.map.scsi
hinv.map.cpu_num
hinv.map.cpu_node
hinv.map.lvname
hinv.cpu.clock
hinv.cpu.vendor
hinv.cpu.model
hinv.cpu.stepping
hinv.cpu.cache
hinv.cpu.bogomips

If no metrics are specified, pminfo displays the entire collection of metrics. This can be useful for
searching for metrics, when only part of the full name is known. For example, this command returns
the following response:

pminfo | grep nfs
nfs.client.calls
nfs.client.reqs
nfs.server.calls
nfs.server.reqs
nfs3.client.calls
nfs3.client.reqs
nfs3.server.calls
nfs3.server.reqs
nfs4.client.calls
nfs4.client.reqs
nfs4.server.calls
nfs4.server.reqs

The -d option causes pminfo to display descriptive information about metrics (refer to the
pmLookupDesc(3) man page for an explanation of this metadata information). The following
command and response show use of the -d option:

pminfo -d proc.nprocs disk.dev.read filesys.free
proc.nprocs
 Data Type: 32-bit unsigned int InDom: PM_INDOM_NULL 0xffffffff
 Semantics: discrete Units: none

disk.dev.read
 Data Type: 32-bit unsigned int InDom: 60.1 0xf000001
 Semantics: counter Units: count

filesys.free
 Data Type: 64-bit unsigned int InDom: 60.5 0xf000005
 Semantics: instant Units: Kbyte

The -f option to pminfo forces the current value of each named metric to be fetched and printed. In
the example below, all metrics in the group hinv are selected:

pminfo -f hinv
hinv.physmem
 value 15701

Chapter 4. Monitoring System Performance

44

hinv.pagesize
 value 16384

hinv.ncpu
 value 4

hinv.ndisk
 value 6

hinv.nfilesys
 value 2

hinv.ninterface
 value 8

hinv.nnode
 value 2

hinv.machine
 value "IP35"

hinv.map.cpu_num
 inst [0 or "cpu:1.1.0.a"] value 0
 inst [1 or "cpu:1.1.0.c"] value 1
 inst [2 or "cpu:1.1.1.a"] value 2
 inst [3 or "cpu:1.1.1.c"] value 3

hinv.map.cpu_node
 inst [0 or "node:1.1.0"] value "/dev/hw/module/001c01/slab/0/node"
 inst [1 or "node:1.1.1"] value "/dev/hw/module/001c01/slab/1/node"

hinv.cpu.clock
 inst [0 or "cpu:1.1.0.a"] value 800
 inst [1 or "cpu:1.1.0.c"] value 800
 inst [2 or "cpu:1.1.1.a"] value 800
 inst [3 or "cpu:1.1.1.c"] value 800

hinv.cpu.vendor
 inst [0 or "cpu:1.1.0.a"] value "GenuineIntel"
 inst [1 or "cpu:1.1.0.c"] value "GenuineIntel"
 inst [2 or "cpu:1.1.1.a"] value "GenuineIntel"
 inst [3 or "cpu:1.1.1.c"] value "GenuineIntel"

hinv.cpu.model
 inst [0 or "cpu:1.1.0.a"] value "0"
 inst [1 or "cpu:1.1.0.c"] value "0"
 inst [2 or "cpu:1.1.1.a"] value "0"
 inst [3 or "cpu:1.1.1.c"] value "0"

hinv.cpu.stepping
 inst [0 or "cpu:1.1.0.a"] value "6"
 inst [1 or "cpu:1.1.0.c"] value "6"
 inst [2 or "cpu:1.1.1.a"] value "6"
 inst [3 or "cpu:1.1.1.c"] value "6"

hinv.cpu.cache
 inst [0 or "cpu:1.1.0.a"] value 0
 inst [1 or "cpu:1.1.0.c"] value 0
 inst [2 or "cpu:1.1.1.a"] value 0
 inst [3 or "cpu:1.1.1.c"] value 0

hinv.cpu.bogomips
 inst [0 or "cpu:1.1.0.a"] value 1195.37

The pmstore Command

45

 inst [1 or "cpu:1.1.0.c"] value 1195.37
 inst [2 or "cpu:1.1.1.a"] value 1195.37
 inst [3 or "cpu:1.1.1.c"] value 1195.37

The -h option directs pminfo to retrieve information from the specified host. If the metric has an
instance domain, the value associated with each instance of the metric is printed:

pminfo -h dove -f filesys.mountdir
filesys.mountdir
 inst [0 or "/dev/xscsi/pci00.01.0/target81/lun0/part3"] value "/"
 inst [1 or "/dev/xscsi/pci00.01.0/target81/lun0/part1"] value "/boot/efi"

The -m option prints the Performance Metric Identifiers (PMIDs) of the selected metrics. This is useful
for finding out which PMDA supplies the metric. For example, the output below identifies the PMDA
supporting domain 4 (the leftmost part of the PMID) as the one supplying information for the metric
environ.extrema.mintemp:

pminfo -m environ.extrema.mintemp
environ.extrema.mintemp PMID: 4.0.3

The -v option verifies that metric definitions in the PMNS correspond with supported metrics, and
checks that a value is available for the metric. Descriptions and values are fetched, but not printed.
Only errors are reported.

Complete information on the pminfo command is found in the pminfo(1) man page. There are
further examples of the use of pminfo in the PCP Tutorials and Case Studies.

4.5. The pmstore Command
From time to time you may wish to change the value of a particular metric. Some metrics are counters
that may need to be reset, and some are simply control variables for agents that collect performance
metrics. When you need to change the value of a metric for any reason, the command to use is
pmstore.

Note
For obvious reasons, the ability to arbitrarily change the value of a performance
metric is not supported. Rather, PCP collectors selectively allow some metrics to be
modified in a very controlled fashion.

The basic syntax of the command is as follows:

pmstore metricname value

There are also command line flags to further specify the action. For example, the -i option restricts
the change to one or more instances of the performance metric.

The value may be in one of several forms, according to the following rules:

1. If the metric has an integer type, then value should consist of an optional leading hyphen,
followed either by decimal digits or “0x” and some hexadecimal digits; “0X” is also acceptable
instead of “0x.”

Chapter 4. Monitoring System Performance

46

2. If the metric has a floating point type, then value should be in the form of an integer (described
above), a fixed point number, or a number in scientific notation.

3. If the metric has a string type, then value is interpreted as a literal string of ASCII characters.

4. If the metric has an aggregate type, then an attempt is made to interpret value as an integer, a
floating point number, or a string. In the first two cases, the minimal word length encoding is used;
for example, “123” would be interpreted as a four-byte aggregate, and “0x100000000” would be
interpreted as an eight-byte aggregate.

The following example illustrates the use of pmstore to enable performance metrics collection in the
txmon PMDA (see ${PCP_PMDAS_DIR}/txmon for the source code of the txmon PMDA). When
the metric txmon.control.level has the value 0, no performance metrics are collected. Values
greater than 0 enable progressively more verbose instrumentation.

pminfo -f txmon.count
txmon.count
No value(s) available!
pmstore txmon.control.level 1
txmon.control.level old value=0 new value=1
pminfo -f txmon.count
txmon.count
 inst [0 or "ord-entry"] value 23
 inst [1 or "ord-enq"] value 11
 inst [2 or "ord-ship"] value 10
 inst [3 or "part-recv"] value 3
 inst [4 or "part-enq"] value 2
 inst [5 or "part-used"] value 1
 inst [6 or "b-o-m"] value 0

For complete information on pmstore usage and syntax, see the pmstore(1) man page.

Chapter 5.

47

Performance Metrics Inference Engine
The Performance Metrics Inference Engine (pmie) is a tool that provides automated monitoring of,
and reasoning about, system performance within the Performance Co-Pilot (PCP) framework.

The major sections in this chapter are as follows:

• Section 5.1, “Introduction to pmie”, provides an introduction to the concepts and design of pmie.

• Section 5.2, “Basic pmie Usage”, describes the basic syntax and usage of pmie.

• Section 5.3, “Specification Language for pmie”, discusses the complete pmie rule specification
language.

• Section 5.4, “pmie Examples”, provides an example, covering several common performance
scenarios.

• Section 5.5, “Developing and Debugging pmie Rules”, presents some tips and techniques for pmie
rule development.

• Section 5.6, “Caveats and Notes on pmie”, presents some important information on using pmie.

• Section 5.7, “Creating pmie Rules with pmieconf”, describes how to use the pmieconf command
to generate pmie rules.

• Section 5.8, “Management of pmie Processes”, provides support for running pmie as a daemon.

5.1. Introduction to pmie
Automated reasoning within Performance Co-Pilot (PCP) is provided by the Performance Metrics
Inference Engine, (pmie), which is an applied artificial intelligence application.

The pmie tool accepts expressions describing adverse performance scenarios, and periodically
evaluates these against streams of performance metric values from one or more sources. When an
expression is found to be true, pmie is able to execute arbitrary actions to alert or notify the system
administrator of the occurrence of an adverse performance scenario. These facilities are very general,
and are designed to accommodate the automated execution of a mixture of generic and site-specific
performance monitoring and control functions.

The stream of performance metrics to be evaluated may be from one or more hosts, or from one
or more PCP archive logs. In the latter case, pmie may be used to retrospectively identify adverse
performance conditions.

Using pmie, you can filter, interpret, and reason about the large volume of performance data made
available from PCP collector systems or PCP archives.

Typical pmie uses include the following:

• Automated real-time monitoring of a host, a set of hosts, or client-server pairs of hosts to raise
operational alarms when poor performance is detected in a production environment

• Nightly processing of archive logs to detect and report performance regressions, or quantify quality
of service for service level agreements or management reports, or produce advance warning of
pending performance problems

Chapter 5. Performance Metrics Inference Engine

48

• Strategic performance management, for example, detection of slightly abnormal to chronic system
behavior, trend analysis, and capacity planning

The pmie expressions are described in a language with expressive power and operational flexibility. It
includes the following operators and functions:

• Generalized predicate-action pairs, where a predicate is a logical expression over the available
performance metrics, and the action is arbitrary. Predefined actions include the following:

• Launch a visible alarm with pmconfirm; see the pmconfirm(1) man page.

• Post an entry to the system log file; see the syslog(3) man page.

• Post an entry to the PCP noticeboard file ${PCP_LOG_DIR}/NOTICES; see the pmpost(1) man
page.

• Execute a shell command or script, for example, to send e-mail, initiate a pager call, warn the help
desk, and so on.

• Echo a message on standard output; useful for scripts that generate reports from retrospective
processing of PCP archive logs.

• Arithmetic and logical expressions in a C-like syntax.

• Expression groups may have an independent evaluation frequency, to support both short-term and
long-term monitoring.

• Canonical scale and rate conversion of performance metric values to provide sensible expression
evaluation.

• Aggregation functions of sum, avg, min, and max, that may be applied to collections of performance
metrics values clustered over multiple hosts, or multiple instances, or multiple consecutive samples
in time.

• Universal and existential quantification, to handle expressions of the form “for every....” and “at least
one...”.

• Percentile aggregation to handle statistical outliers, such as “for at least 80% of the last 20
samples, ...”.

• Macro processing to expedite repeated use of common subexpressions or specification
components.

• Transparent operation against either live-feeds of performance metric values from PMCD on one or
more hosts, or against PCP archive logs of previously accumulated performance metric values.

The power of pmie may be harnessed to automate the most common of the deterministic system
management functions that are responses to changes in system performance. For example, disable a
batch stream if the DBMS transaction commit response time at the ninetieth percentile goes over two
seconds, or stop accepting uploads and send e-mail to the sysadmin alias if free space in a storage
system falls below five percent.

Moreover, the power of pmie can be directed towards the exceptional and sporadic performance
problems. For example, if a network packet storm is expected, enable IP header tracing for ten
seconds, and send e-mail to advise that data has been collected and is awaiting analysis. Or,

Basic pmie Usage

49

if production batch throughput falls below 50 jobs per minute, activate a pager to the systems
administrator on duty.

Obviously, pmie customization is required to produce meaningful filtering and actions in each
production environment. The pmieconf tool provides a convenient customization method, allowing
the user to generate parameterized pmie rules for some of the more common performance scenarios.

5.2. Basic pmie Usage
This section presents and explains some basic examples of pmie usage. The pmie tool accepts
the common PCP command line arguments, as described in Chapter 3, Common Conventions and
Arguments. In addition, pmie accepts the following command line arguments:

-d
Enables interactive debug mode.

-v
Verbose mode: expression values are displayed.

-V
Verbose mode: annotated expression values are displayed.

-W
When-verbose mode: when a condition is true, the satisfying expression bindings are displayed.

One of the most basic invocations of this tool is this form:

pmie filename

In this form, the expressions to be evaluated are read from filename. In the absence of a given
filename, expressions are read from standard input, which may be your system keyboard.

5.2.1. pmie use of PCP services
Before you use pmie, it is strongly recommended that you familiarize yourself with the concepts from
the Section 1.2, “Conceptual Foundations”. The discussion in this section serves as a very brief review
of these concepts.

PCP makes available thousands of performance metrics that you can use when formulating
expressions for pmie to evaluate. If you want to find out which metrics are currently available on your
system, use this command:

pminfo

Use the pmie command line arguments to find out more about a particular metric. In Example 5.1,
“pmie with the -f Option”, to fetch new metric values from host dove, you use the -f flag:

pminfo -f -h dove disk.dev.total

This produces the following response:

disk.dev.total

Chapter 5. Performance Metrics Inference Engine

50

 inst [0 or "xscsi/pci00.01.0/target81/lun0/disc"] value 131233
 inst [4 or "xscsi/pci00.01.0/target82/lun0/disc"] value 4
 inst [8 or "xscsi/pci00.01.0/target83/lun0/disc"] value 4
 inst [12 or "xscsi/pci00.01.0/target84/lun0/disc"] value 4
 inst [16 or "xscsi/pci00.01.0/target85/lun0/disc"] value 4
 inst [18 or "xscsi/pci00.01.0/target86/lun0/disc"] value 4

Example 5.1. pmie with the -f Option

This reveals that on the host dove, the metric disk.dev.total has six instances, one for each disk
on the system.

Use the following command to request help text (specified with the -T flag) to provide more
information about performance metrics:

pminfo -T network.interface.in.packets

The metadata associated with a performance metric is used by pmie to determine how the value
should be interpreted. You can examine the descriptor that encodes the metadata by using the -d flag
for pminfo, as shown in Example 5.2, “pmie with the -d and -h Options”:

pminfo -d -h somehost mem.util.cached kernel.percpu.cpu.user

In response, you see output similar to this:

mem.util.cached
 Data Type: 64-bit unsigned int InDom: PM_INDOM_NULL 0xffffffff
 Semantics: instant Units: Kbyte

kernel.percpu.cpu.user
 Data Type: 64-bit unsigned int InDom: 60.0 0xf000000
 Semantics: counter Units: millisec

Example 5.2. pmie with the -d and -h Options

Note
A cumulative counter such as kernel.percpu.cpu.user is automatically
converted by pmie into a rate (measured in events per second, or count/second),
while instantaneous values such as mem.util.cached are not subjected to rate
conversion. Metrics with an instance domain (InDom in the pminfo output) of
PM_INDOM_NULL are singular and always produce one value per source. However, a
metric like kernel.percpu.cpu.user has an instance domain, and may produce
multiple values per source (in this case, it is one value for each configured CPU).

5.2.2. Simple pmie Usage
Example 5.3, “pmie with the -v Option” directs the inference engine to evaluate and print values
(specified with the -v flag) for a single performance metric (the simplest possible expression), in this
case disk.dev.total, collected from the local PMCD:

pmie -v
iops = disk.dev.total;

Complex pmie Examples

51

Ctrl+D
iops: ? ?
iops: 14.4 0
iops: 25.9 0.112
iops: 12.2 0
iops: 12.3 64.1
iops: 8.594 52.17
iops: 2.001 71.64

Example 5.3. pmie with the -v Option

On this system, there are two disk spindles, hence two values of the expression iops per sample.
Notice that the values for the first sample are unknown (represented by the question marks [?] in the
first line of output), because rates can be computed only when at least two samples are available.
The subsequent samples are produced every ten seconds by default. The second sample reports that
during the preceding ten seconds there was an average of 14.4 transfers per second on one disk and
no transfers on the other disk.

Rates are computed using time stamps delivered by PMCD. Due to unavoidable inaccuracy in the
actual sampling time (the sample interval is not exactly 10 seconds), you may see more decimal
places in values than you expect. Notice, however, that these errors do not accumulate but cancel
each other out over subsequent samples.

In Example 5.3, “pmie with the -v Option”, the expression to be evaluated was entered using the
keyboard, followed by the end-of-file character [Ctrl+D]. Usually, it is more convenient to enter
expressions into a file (for example, myrules) and ask pmie to read the file. Use this command
syntax:

pmie -v myrules

Please refer to the pmie(1) man page for a complete description of pmie command line options.

5.2.3. Complex pmie Examples
This section illustrates more complex pmie expressions of the specification language. Section 5.3,
“Specification Language for pmie”, provides a complete description of the pmie specification
language.

The following arithmetic expression computes the percentage of write operations over the total number
of disk transfers.

(disk.all.write / disk.all.total) * 100;

The disk.all metrics are singular, so this expression produces exactly one value per sample,
independent of the number of disk devices.

Note
If there is no disk activity, disk.all.total will be zero and pmie evaluates this
expression to be not a number. When -v is used, any such values are displayed as
question marks.

The following logical expression has the value true or false for each disk:

Chapter 5. Performance Metrics Inference Engine

52

disk.dev.total > 10 &&
disk.dev.write > disk.dev.read;

The value is true if the number of writes exceeds the number of reads, and if there is significant disk
activity (more than 10 transfers per second). Example 5.4, “Printed pmie Output” demonstrates a
simple action:

some_inst disk.dev.total > 60
 -> print "[%i] high disk i/o";

Example 5.4. Printed pmie Output

This prints a message to the standard output whenever the total number of transfers for some disk
(some_inst) exceeds 60 transfers per second. The %i (instance) in the message is replaced with the
name(s) of the disk(s) that caused the logical expression to be true.

Using pmie to evaluate the above expressions every 3 seconds, you see output similar to
Example 5.5, “Labelled pmie Output”. Notice the introduction of labels for each pmie expression.

pmie -v -t 3sec
pct_wrt = (disk.all.write / disk.all.total) * 100;
busy_wrt = disk.dev.total > 10 &&
 disk.dev.write > disk.dev.read;
busy = some_inst disk.dev.total > 60
 -> print "[%i] high disk i/o ";
Ctrl+D
pct_wrt: ?
busy_wrt: ? ?
busy: ?

pct_wrt: 18.43
busy_wrt: false false
busy: false

Mon Aug 5 14:56:08 2012: [disk2] high disk i/o
pct_wrt: 10.83
busy_wrt: false false
busy: true

pct_wrt: 19.85
busy_wrt: true false
busy: false

pct_wrt: ?
busy_wrt: false false
busy: false

Mon Aug 5 14:56:17 2012: [disk1] high disk i/o [disk2] high disk i/o
pct_wrt: 14.8
busy_wrt: false false
busy: true

Example 5.5. Labelled pmie Output

The first sample contains unknowns, since all expressions depend on computing rates. Also notice
that the expression pct_wrt may have an undefined value whenever all disks are idle, as the
denominator of the expression is zero. If one or more disks is busy, the expression busy is true, and
the message from the print in the action part of the rule appears (before the -v values).

Specification Language for pmie

53

5.3. Specification Language for pmie
This section describes the complete syntax of the pmie specification language, as well as macro
facilities and the issue of sampling and evaluation frequency. The reader with a preference for learning
by example may choose to skip this section and go straight to the examples in Section 5.4, “pmie
Examples”.

Complex expressions are built up recursively from simple elements:

1. Performance metric values are obtained from PMCD for real-time sources, otherwise from PCP
archive logs.

2. Metrics values may be combined using arithmetic operators to produce arithmetic expressions.

3. Arithmetic expressions may be compared using relational operators to produce logical
expressions.

4. Logical expressions may be combined using Boolean operators, including powerful quantifiers.

5. Aggregation operators may be used to compute summary expressions, for either arithmetic or
logical operands.

6. The final logical expression may be used to initiate a sequence of actions.

5.3.1. Basic pmie Syntax
The pmie rule specification language supports a number of basic syntactic elements.

5.3.1.1. Lexical Elements
All pmie expressions are composed of the following lexical elements:

Identifier
Begins with an alphabetic character (either upper or lowercase), followed by zero or more letters,
the numeric digits, and the special characters period (.) and underscore (_), as shown in the
following example:

x, disk.dev.total and my_stuff

As a special case, an arbitrary sequence of letters enclosed by apostrophes (') is also interpreted
as an identifier; for example:

'vms$slow_response'

Keyword
The aggregate operators, units, and predefined actions are represented by keywords; for example,
some_inst, print, and hour.

Numeric constant
Any likely representation of a decimal integer or floating point number; for example, 124, 0.05, and
-45.67

String constant
An arbitrary sequence of characters, enclosed by double quotation marks ("x").

Chapter 5. Performance Metrics Inference Engine

54

Within quotes of any sort, the backslash (\) may be used as an escape character as shown in the
following example:

"A \"gentle\" reminder"

5.3.1.2. Comments
Comments may be embedded anywhere in the source, in either of these forms:

/* text */
Comment, optionally spanning multiple lines, with no nesting of comments.

// text
Comment from here to the end of the line.

5.3.1.3. Macros
When they are fully specified, expressions in pmie tend to be verbose and repetitive. The use of
macros can reduce repetition and improve readability and modularity. Any statement of the following
form associates the macro name identifier with the given string constant.

identifier = "string";

Any subsequent occurrence of the macro name identifier is replaced by the string most
recently associated with a macro definition for identifier.

$identifier

For example, start with the following macro definition:

disk = "disk.all";

You can then use the following syntax:

pct_wrt = ($disk.write / $disk.total) * 100;

Note
Macro expansion is performed before syntactic parsing; so macros may only be
assigned constant string values.

5.3.1.4. Units
The inference engine converts all numeric values to canonical units (seconds for time, bytes for
space, and events for count). To avoid surprises, you are encouraged to specify the units for numeric
constants. If units are specified, they are checked for dimension compatibility against the metadata for
the associated performance metrics.

The syntax for a units specification is a sequence of one or more of the following keywords
separated by either a space or a slash (/), to denote per: byte, KByte, MByte, GByte, TByte, nsec,

Setting Evaluation Frequency

55

nanosecond, usec, microsecond, msec, millisecond, sec, second, min, minute, hour,
count, Kcount, Mcount, Gcount, or Tcount. Plural forms are also accepted.

The following are examples of units usage:

disk.dev.blktotal > 1 Mbyte / second;
mem.util.cached < 500 Kbyte;

Note
If you do not specify the units for numeric constants, it is assumed that the constant
is in the canonical units of seconds for time, bytes for space, and events for count,
and the dimensionality of the constant is assumed to be correct. Thus, in the following
expression, the 500 is interpreted as 500 bytes.

mem.util.cached < 500

5.3.2. Setting Evaluation Frequency
The identifier name delta is reserved to denote the interval of time between consecutive evaluations
of one or more expressions. Set delta as follows:

delta = number [units];

If present, units must be one of the time units described in the preceding section. If absent,
units are assumed to be seconds. For example, the following expression has the effect that any
subsequent expressions (up to the next expression that assigns a value to delta) are scheduled for
evaluation at a fixed frequency, once every five minutes.

delta = 5 min;

The default value for delta may be specified using the -t command line option; otherwise delta is
initially set to be 10 seconds.

5.3.3. pmie Metric Expressions
The performance metrics namespace (PMNS) provides a means of naming performance metrics,
for example, disk.dev.read. PCP allows an application to retrieve one or more values for a
performance metric from a designated source (a collector host running PMCD, or a PCP archive log).
To specify a single value for some performance metric requires the metric name to be associated with
all three of the following:

• A particular host (or source of metrics values)

• A particular instance (for metrics with multiple values)

• A sample time

The permissible values for hosts are the range of valid hostnames as provided by Internet naming
conventions.

Chapter 5. Performance Metrics Inference Engine

56

The names for instances are provided by the Performance Metrics Domain Agents (PMDA) for the
instance domain associated with the chosen performance metric.

The sample time specification is defined as the set of natural numbers 0, 1, 2, and so on. A number
refers to one of a sequence of sampling events, from the current sample 0 to its predecessor 1,
whose predecessor was 2, and so on. This scheme is illustrated by the time line shown in Figure 5.1,
“Sampling Time Line”.

past futurenow

4 3 2 1 0

Figure 5.1. Sampling Time Line

Each sample point is assumed to be separated from its predecessor by a constant amount of real
time, the delta. The most recent sample point is always zero. The value of delta may vary from one
expression to the next, but is fixed for each expression; for more information on the sampling interval,
see Section 5.3.2, “Setting Evaluation Frequency”.

For pmie, a metrics expression is the name of a metric, optionally qualified by a host, instance and
sample time specification. Special characters introduce the qualifiers: colon (:) for hosts, hash or
pound sign (#) for instances, and at (@) for sample times. The following expression refers to the
previous value (@1) of the counter for the disk read operations associated with the disk instance
#disk1 on the host moomba.

disk.dev.read :moomba #disk1 @1

In fact, this expression defines a point in the three-dimensional (3D) parameter space of {host} x
{instance} x {sample time} as shown in Figure 5.2, “Three-Dimensional Parameter Space”.

host

instance

sam ple
t im e

Figure 5.2. Three-Dimensional Parameter Space

A metric expression may also identify sets of values corresponding to one-, two-, or three-dimensional
slices of this space, according to the following rules:

1. A metric expression consists of a PCP metric name, followed by optional host specifications,
followed by optional instance specifications, and finally, optional sample time specifications.

pmie Rate Conversion

57

2. A host specification consists of one or more host names, each prefixed by a colon (:). For
example: :indy :far.away.domain.com :localhost

3. A missing host specification implies the default pmie source of metrics, as defined by a -h option
on the command line, or the first named archive in an -a option on the command line, or PMCD
on the local host.

4. An instance specification consists of one or more instance names, each prefixed by a hash or
pound (#) sign. For example: #eth0 #eth2

Recall that you can discover the instance names for a particular metric, using the pminfo
command. See Section 5.2.1, “pmie use of PCP services”.

Within the pmie grammar, an instance name is an identifier. If the instance name contains
characters other than alphanumeric characters, enclose the instance name in single quotes; for
example, #'/boot' #'/usr'

5. A missing instance specification implies all instances for the associated performance metric from
each associated pmie source of metrics.

6. A sample time specification consists of either a single time or a range of times. A single time is
represented as an at (@) followed by a natural number. A range of times is an at (@), followed by a
natural number, followed by two periods (..) followed by a second natural number. The ordering
of the end points in a range is immaterial. For example, @0..9 specifies the last 10 sample times.

7. A missing sample time specification implies the most recent sample time.

The following metric expression refers to a three-dimensional set of values, with two hosts in one
dimension, five sample times in another, and the number of instances in the third dimension being
determined by the number of configured disk spindles on the two hosts.

disk.dev.read :foo :bar @0..4

5.3.4. pmie Rate Conversion
Many of the metrics delivered by PCP are cumulative counters. Consider the following metric:

disk.all.total

A single value for this metric tells you only that a certain number of disk I/O operations have occurred
since boot time, and that information may be invalid if the counter has exceeded its 32-bit range and
wrapped. You need at least two values, sampled at known times, to compute the recent rate at which
the I/O operations are being executed. The required syntax would be this:

(disk.all.total @0 - disk.all.total @1) / delta

The accuracy of delta as a measure of actual inter-sample delay is an issue. pmie requests
samples, at intervals of approximately delta, while the results exported from PMCD are time
stamped with the high-resolution system clock time when the samples were extracted. For these
reasons, a built-in and implicit rate conversion using accurate time stamps is provided by pmie
for performance metrics that have counter semantics. For example, the following expression is
unconditionally converted to a rate by pmie.

Chapter 5. Performance Metrics Inference Engine

58

disk.all.total

5.3.5. pmie Arithmetic Expressions
Within pmie, simple arithmetic expressions are constructed from metrics expressions (see
Section 5.3.3, “pmie Metric Expressions”) and numeric constants, using all of the arithmetic operators
and precedence rules of the C programming language.

All pmie arithmetic is performed in double precision.

Section 5.3.8, “pmie Intrinsic Operators”, describes additional operators that may be used for
aggregate operations to reduce the dimensionality of an arithmetic expression.

5.3.6. pmie Logical Expressions
A number of logical expression types are supported:

• Logical constants

• Relational expressions

• Boolean expressions

• Quantification operators

5.3.6.1. Logical Constants
Like in the C programming language, pmie interprets an arithmetic value of zero to be false, and all
other arithmetic values are considered true.

5.3.6.2. Relational Expressions
Relational expressions are the simplest form of logical expression, in which values may be derived
from arithmetic expressions using pmie relational operators. For example, the following is a relational
expression that is true or false, depending on the aggregate total of disk read operations per second
being greater than 50.

disk.all.read > 50 count/sec

All of the relational logical operators and precedence rules of the C programming language are
supported in pmie.

As described in Section 5.3.3, “pmie Metric Expressions”, arithmetic expressions in pmie may
assume set values. The relational operators are also required to take constant, singleton, and set-
valued expressions as arguments. The result has the same dimensionality as the operands. Suppose
the rule in Example 5.6, “Relational Expressions ” is given:

hosts = ":gonzo";
intfs = "#eth0 #eth2";
all_intf = network.interface.in.packets
 $hosts $intfs @0..2 > 300 count/sec;

Then the execution of pmie may proceed as follows:

pmie Logical Expressions

59

pmie -V uag.11
all_intf:
 gonzo: [eth0] ? ? ?
 gonzo: [eth2] ? ? ?
all_intf:
 gonzo: [eth0] false ? ?
 gonzo: [eth2] false ? ?
all_intf:
 gonzo: [eth0] true false ?
 gonzo: [eth2] false false ?
all_intf:
 gonzo: [eth0] true true false
 gonzo: [eth2] false false false

Example 5.6. Relational Expressions

At each sample, the relational operator greater than (>) produces six truth values for the cross-product
of the instance and sample time dimensions.

Section 5.3.6.4, “Quantification Operators”, describes additional logical operators that may be used to
reduce the dimensionality of a relational expression.

5.3.6.3. Boolean Expressions
The regular Boolean operators from the C programming language are supported: conjunction (&&),
disjunction (||) and negation (!).

As with the relational operators, the Boolean operators accommodate set-valued operands, and set-
valued results.

5.3.6.4. Quantification Operators
Boolean and relational operators may accept set-valued operands and produce set-valued results. In
many cases, rules that are appropriate for performance management require a set of truth values to
be reduced along one or more of the dimensions of hosts, instances, and sample times described in
Section 5.3.3, “pmie Metric Expressions”. The pmie quantification operators perform this function.

Each quantification operator takes a one-, two-, or three-dimension set of truth values as an operand,
and reduces it to a set of smaller dimension, by quantification along a single dimension. For example,
suppose the expression in the previous example is simplified and prefixed by some_sample, to
produce the following expression:

intfs = "#eth0 #eth2";
all_intf = some_sample network.interface.in.packets
 $intfs @0..2 > 300 count/sec;

Then the expression result is reduced from six values to two (one per interface instance), such that
the result for a particular instance will be false unless the relational expression for the same interface
instance is true for at least one of the preceding three sample times.

There are existential, universal, and percentile quantification operators in each of the host,
instance, and sample time dimensions to produce the nine operators as follows:

some_host
True if the expression is true for at least one host for the same instance and sample time.

Chapter 5. Performance Metrics Inference Engine

60

all_host
True if the expression is true for every host for the same instance and sample time.

N%_host
True if the expression is true for at least N% of the hosts for the same instance and sample
time.

some_inst
True if the expression is true for at least one instance for the same host and sample time.

all_instance
True if the expression is true for every instance for the same host and sample time.

N%_instance
True if the expression is true for at least N% of the instances for the same host and sample
time.

some_sample time
True if the expression is true for at least one sample time for the same host and instance.

all_sample time
True if the expression is true for every sample time for the same host and instance.

N%_sample time
True if the expression is true for at least N% of the sample times for the same host and
instance.

These operators may be nested. For example, the following expression answers the question: “Are all
hosts experiencing at least 20% of their disks busy either reading or writing?”

Servers = ":moomba :babylon";
all_host (
 20%_inst disk.dev.read $Servers > 40 ||
 20%_inst disk.dev.write $Servers > 40
);

The following expression uses different syntax to encode the same semantics:

all_host (
 20%_inst (
 disk.dev.read $Servers > 40 ||
 disk.dev.write $Servers > 40
)
);

Note
To avoid confusion over precedence and scope for the quantification operators, use
explicit parentheses.

Two additional quantification operators are available for the instance dimension only, namely
match_inst and nomatch_inst, that take a regular expression and a boolean expression.
The result is the boolean AND of the expression and the result of matching (or not matching) the
associated instance name against the regular expression.

pmie Rule Expressions

61

For example, this rule evaluates error rates on various 10BaseT Ethernet network interfaces (such as
ecN, ethN, or efN):

some_inst
 match_inst "^(ec|eth|ef)"
 network.interface.total.errors > 10 count/sec
-> syslog "Ethernet errors:" " %i"

5.3.7. pmie Rule Expressions
Rule expressions for pmie have the following syntax:

lexpr -> actions ;

The semantics are as follows:

• If the logical expression lexpr evaluates true, then perform the actions that follow. Otherwise,
do not perform the actions.

• It is required that lexpr has a singular truth value. Aggregation and quantification operators must
have been applied to reduce multiple truth values to a single value.

• When executed, an action completes with a success/failure status.

• One or more actions may appear; consecutive actions are separated by operators that control
the execution of subsequent actions, as follows:

action-1 &
Always execute subsequent actions (serial execution).

action-1 |
If action-1 fails, execute subsequent actions, otherwise skip the subsequent actions
(alternation).

An action is composed of a keyword to identify the action method, an optional time specification,
and one or more arguments.

A time specification uses the same syntax as a valid time interval that may be assigned to delta, as
described in Section 5.3.2, “Setting Evaluation Frequency”. If the action is executed and the time
specification is present, pmie will suppress any subsequent execution of this action until the wall
clock time has advanced by time.

The arguments are passed directly to the action method.

The following action methods are provided:

shell
The single argument is passed to the shell for execution. This action is implemented using
system in the background. The action does not wait for the system call to return, and succeeds
unless the fork fails.

alarm
A notifier containing a time stamp, a single argument as a message, and a Cancel button is
posted on the current display screen (as identified by the DISPLAY environment variable). Each

Chapter 5. Performance Metrics Inference Engine

62

alarm action first checks if its notifier is already active. If there is an identical active notifier, a
duplicate notifier is not posted. The action succeeds unless the fork fails.

syslog
A message is written into the system log. If the first word of the first argument is -p, the second
word is interpreted as the priority (see the syslog(3) man page); the message tag is pcp-
pmie. The remaining argument is the message to be written to the system log. This action always
succeeds.

print
A message containing a time stamp in ctime(3) format and the argument is displayed out to
standard output (stdout). This action always succeeds.

Within the argument passed to an action method, the following expansions are supported to allow
some of the context from the logical expression on the left to appear to be embedded in the argument:

%h
The value of a host that makes the expression true.

%i
The value of an instance that makes the expression true.

%v
The value of a performance metric from the logical expression.

Some ambiguity may occur in respect to which host, instance, or performance metric is bound to a %-
token. In most cases, the leftmost binding in the top-level subexpression is used. You may need to use
pmie in the interactive debugging mode (specify the -d command line option) in conjunction with the
-W command line option to discover which subexpressions contributes to the %-token bindings.

Example 5.7, “Rule Expression Options ” illustrates some of the options when constructing rule
expressions:

some_inst (disk.dev.total > 60)
 -> syslog 10 mins "[%i] busy, %v IOPS " &
 shell 1 hour "echo \
 'Disk %i is REALLY busy. Running at %v I/Os per second' \
 | Mail -s 'pmie alarm' sysadm";

Example 5.7. Rule Expression Options

In this case, %v and %i are both associated with the instances for the metric disk.dev.total that
make the expression true. If more than one instance makes the expression true (more than one disk
is busy), then the argument is formed by concatenating the result from each %-token binding. The text
added to the system log file might be as shown in Example 5.8, “System Log Text”:

Aug 6 08:12:44 5B:gonzo pcp-pmie[3371]:
 [disk1] busy, 3.7 IOPS [disk2] busy, 0.3 IOPS

Example 5.8. System Log Text

pmie Intrinsic Operators

63

Note
When pmie is processing performance metrics from a PCP archive log, the actions
will be processed in the expected manner; however, the action methods are modified
to report a textual facsimile of the action on the standard output.

Consider the rule in Example 5.9, “Standard Output”:

delta = 2 sec; // more often for demonstration purposes
percpu = "kernel.percpu";
// Unusual usr-sys split when some CPU is more than 20% in usr mode
// and sys mode is at least 1.5 times usr mode
//
cpu_usr_sys = some_inst (
 $percpu.cpu.sys > $percpu.cpu.user * 1.5 &&
 $percpu.cpu.user > 0.2
) -> alarm "Unusual sys time: " "%i ";

When evaluated against an archive, the following output is generated (the alarm action produces a
message on standard output):

pmafm ${HOME}/f4 pmie cpu.head cpu.00
alarm Wed Aug 7 14:54:48 2012: Unusual sys time: cpu0
alarm Wed Aug 7 14:54:50 2012: Unusual sys time: cpu0
alarm Wed Aug 7 14:54:52 2012: Unusual sys time: cpu0
alarm Wed Aug 7 14:55:02 2012: Unusual sys time: cpu0
alarm Wed Aug 7 14:55:06 2012: Unusual sys time: cpu0

Example 5.9. Standard Output

5.3.8. pmie Intrinsic Operators
The following sections describe some other useful intrinsic operators for pmie. These operators are
divided into three groups:

• Arithmetic aggregation

• The rate operator

• Transitional operators

5.3.8.1. Arithmetic Aggregation
For set-valued arithmetic expressions, the following operators reduce the dimensionality of the result
by arithmetic aggregation along one of the host, instance, or sample time dimensions. For
example, to aggregate in the host dimension, the following operators are provided:

avg_host
Computes the average value across all instances for the same host and sample time

sum_host
Computes the total value across all instances for the same host and sample time

count_host
Computes the number of values across all instances for the same host and sample time

Chapter 5. Performance Metrics Inference Engine

64

min_host
Computes the minimum value across all instances for the same host and sample time

max_host
Computes the maximum value across all instances for the same host and sample time

Ten additional operators correspond to the forms *_inst and *_sample.

The following example illustrates the use of an aggregate operator in combination with an existential
operator to answer the question “Does some host currently have two or more busy processors?”

// note '' to escape - in host name
poke = ":moomba :'mac-larry' :bitbucket";
some_host (
 count_inst (kernel.percpu.cpu.user $poke +
 kernel.percpu.cpu.sys $poke > 0.7) >= 2
)
 -> alarm "2 or more busy CPUs";

5.3.8.2. The rate Operator
The rate operator computes the rate of change of an arithmetic expression as shown in the following
example:

rate mem.util.cached

It returns the rate of change for the mem.util.cached performance metric; that is, the rate at which
page cache memory is being allocated and released.

The rate intrinsic operator is most useful for metrics with instantaneous value semantics. For metrics
with counter semantics, pmie already performs an implicit rate calculation (see the Section 5.3.4,
“pmie Rate Conversion”) and the rate operator would produce the second derivative with respect to
time, which is less likely to be useful.

5.3.8.3. Transitional Operators
In some cases, an action needs to be triggered when an expression changes from true to false or
vice versa. The following operators take a logical expression as an operand, and return a logical
expression:

rising
Has the value true when the operand transitions from false to true in consecutive samples.

falling
Has the value false when the operand transitions from true to false in consecutive samples.

5.4. pmie Examples
The examples presented in this section are task-oriented and use the full power of the pmie
specification language as described in Section 5.3, “Specification Language for pmie”.

Source code for the pmie examples in this chapter, and many more examples, is provided within
the PCP Tutorials and Case Studies. Example 5.10, “Monitoring CPU Utilization” and Example 5.11,
“Monitoring Disk Activity ” illustrate monitoring CPU utilization and disk activity.

pmie Examples

65

// Some Common Performance Monitoring Scenarios
//
// The CPU Group
//
delta = 2 sec; // more often for demonstration purposes
// common prefixes
//
percpu = "kernel.percpu";
all = "kernel.all";
// Unusual usr-sys split when some CPU is more than 20% in usr mode
// and sys mode is at least 1.5 times usr mode
//
cpu_usr_sys =
 some_inst (
 $percpu.cpu.sys > $percpu.cpu.user * 1.5 &&
 $percpu.cpu.user > 0.2
)
 -> alarm "Unusual sys time: " "%i ";
// Over all CPUs, syscall_rate > 1000 * no_of_cpus
//
cpu_syscall =
 $all.syscall > 1000 count/sec * hinv.ncpu
 -> print "high aggregate syscalls: %v";
// Sustained high syscall rate on a single CPU
//
delta = 30 sec;
percpu_syscall =
 some_inst (
 $percpu.syscall > 2000 count/sec
)
 -> syslog "Sustained syscalls per second? " "[%i] %v ";
// the 1 minute load average exceeds 5 * number of CPUs on any host
hosts = ":gonzo :moomba"; // change as required
delta = 1 minute; // no need to evaluate more often than this
high_load =
 some_host (
 $all.load $hosts #'1 minute' > 5 * hinv.ncpu
)
 -> alarm "High Load Average? " "%h: %v ";

Example 5.10. Monitoring CPU Utilization

// Some Common Performance Monitoring Scenarios
//
// The Disk Group
//
delta = 15 sec; // often enough for disks?
// common prefixes
//
disk = "disk";
// Any disk performing more than 40 I/Os per second, sustained over
// at least 30 seconds is probably busy
//
delta = 30 seconds;
disk_busy =
 some_inst (
 $disk.dev.total > 40 count/sec
)
] -> shell "Mail -s 'Heavy systained disk traffic' sysadm";
// Try and catch bursts of activity ... more than 60 I/Os per second
// for at least 25% of 8 consecutive 3 second samples
//

Chapter 5. Performance Metrics Inference Engine

66

delta = 3 sec;
disk_burst =
 some_inst (
 25%_sample (
 $disk.dev.total @0..7 > 60 count/sec
)
)
 -> alarm "Disk Burst? " "%i ";
// any SCSI disk controller performing more than 3 Mbytes per
// second is busy
// Note: the obscure 512 is to convert blocks/sec to byte/sec,
// and pmie handles the rest of the scale conversion
//
some_inst $disk.ctl.blktotal * 512 > 3 Mbyte/sec
 -> alarm "Busy Disk Controller: " "%i ";

Example 5.11. Monitoring Disk Activity

5.5. Developing and Debugging pmie Rules
Given the -d command line option, pmie executes in interactive mode, and the user is presented with
a menu of options:

pmie debugger commands
 f [file-name] - load expressions from given file or stdin
 l [expr-name] - list named expression or all expressions
 r [interval] - run for given or default interval
 S time-spec - set start time for run
 T time-spec - set default interval for run command
 v [expr-name] - print subexpression for %h, %i and %v bindings
 h or ? - print this menu of commands
 q - quit
pmie>

If both the -d option and a filename are present, the expressions in the given file are loaded before
entering interactive mode. Interactive mode is useful for debugging new rules.

5.6. Caveats and Notes on pmie
The following sections provide important information for users of pmie.

5.6.1. Performance Metrics Wraparound
Performance metrics that are cumulative counters may occasionally overflow their range and
wraparound to 0. When this happens, an unknown value (printed as ?) is returned as the value of the
metric for one sample (recall that the value returned is normally a rate). You can have PCP interpolate
a value based on expected rate of change by setting the PCP_COUNTER_WRAP environment variable.

5.6.2. pmie Sample Intervals
The sample interval (delta) should always be long enough, particularly in the case of rates, to ensure
that a meaningful value is computed. Interval may vary according to the metric and your needs. A
reasonable minimum is in the range of ten seconds or several minutes. Although PCP supports
sampling rates up to hundreds of times per second, using small sample intervals creates unnecessary
load on the monitored system.

pmie Instance Names

67

5.6.3. pmie Instance Names
When you specify a metric instance name (#identifier) in a pmie expression, it is compared
against the instance name looked up from either a live collector system or an archive as follows:

• If the given instance name and the looked up name are the same, they are considered to match.

• Otherwise, the first two space separated tokens are extracted from the looked up name. If the given
instance name is the same as either of these tokens, they are considered a match.

For some metrics, notably the per process (proc.xxx.xxx) metrics, the first token in the looked up
instance name is impossible to determine at the time you are writing pmie expressions. The above
policy circumvents this problem.

5.6.4. pmie Error Detection
The parser used in pmie is not particularly robust in handling syntax errors. It is suggested that you
check any problematic expressions individually in interactive mode:

pmie -v -d
pmie> f
expression
Ctrl+D

If the expression was parsed, its internal representation is shown:

pmie> l

The expression is evaluated twice and its value printed:

pmie> r 10sec

Then quit:

pmie> q

It is not always possible to detect semantic errors at parse time. This happens when a performance
metric descriptor is not available from the named host at this time. A warning is issued, and the
expression is put on a wait list. The wait list is checked periodically (about every five minutes) to see if
the metric descriptor has become available. If an error is detected at this time, a message is printed to
the standard error stream (stderr) and the offending expression is set aside.

5.7. Creating pmie Rules with pmieconf
The pmieconf tool is a command line utility that is designed to aid the specification of pmie rules
from parameterized versions of the rules. pmieconf is used to display and modify variables or
parameters controlling the details of the generated pmie rules.

pmieconf reads two different forms of supplied input files and produces a localized pmie
configuration file as its output.

The first input form is a generalized pmie rule file such as those found below ${PCP_VAR_DIR}/
config/pmieconf. These files contain the generalized rules which pmieconf is able to manipulate.

Chapter 5. Performance Metrics Inference Engine

68

Each of the rules can be enabled or disabled, or the individual variables associated with each rule can
be edited.

The second form is an actual pmie configuration file (that is, a file which can be interpreted by pmie,
conforming to the pmie syntax described in Section 5.3, “Specification Language for pmie”). This file
is both input to and output from pmieconf.

The input version of the file contains any changed variables or rule states from previous invocations of
pmieconf, and the output version contains both the changes in state (for any subsequent pmieconf
sessions) and the generated pmie syntax. The pmieconf state is embedded within a pmie comment
block at the head of the output file and is not interpreted by pmie itself.

pmieconf is an integral part of the pmie daemon management process described in Section 5.8,
“Management of pmie Processes”. Procedure 5.1, “Display pmieconf Rules” and Procedure 5.2,
“Modify pmieconf Rules and Generate a pmie File” introduce the pmieconf tool through a series of
typical operations.

Procedure 5.1. Display pmieconf Rules
1. Start pmieconf interactively (as the superuser).

pmieconf -f ${PCP_SYSCONF_DIR}/pmie/config.demo
Updates will be made to ${PCP_SYSCONF_DIR}/pmie/config.demo

pmieconf>

2. List the set of available pmieconf rules by using the rules command.

3. List the set of rule groups using the groups command.

4. List only the enabled rules, using the rules enabled command.

5. List a single rule:

pmieconf> list memory.swap_low
 rule: memory.swap_low [Low free swap space]
 help: There is only threshold percent swap space remaining - the system
 may soon run out of virtual memory. Reduce the number and size of
 the running programs or add more swap(1) space before it
completely
 runs out.
 predicate =
 some_host (
 (100 * (swap.free $hosts$ / swap.length $hosts$))
 < $threshold$
 && swap.length $hosts$ > 0 // ensure swap in use
)
 vars: enabled = no
 threshold = 10%

pmieconf>

6. List one rule variable:

pmieconf> list memory.swap_low threshold
 rule: memory.swap_low [Low free swap space]
 threshold = 10%

Creating pmie Rules with pmieconf

69

pmieconf>

Procedure 5.2. Modify pmieconf Rules and Generate a pmie File
1. Lower the threshold for the memory.swap_low rule, and also change the pmie sample interval

affecting just this rule. The delta variable is special in that it is not associated with any particular
rule; it has been defined as a global pmieconf variable. Global variables can be displayed using
the list global command to pmieconf, and can be modified either globally or local to a
specific rule.

pmieconf> modify memory.swap_low threshold 5

pmieconf> modify memory.swap_low delta "1 sec"

pmieconf>

2. Disable all of the rules except for the memory.swap_low rule so that you can see the effects of
your change in isolation.

This produces a relatively simple pmie configuration file:

pmieconf> disable all

pmieconf> enable memory.swap_low

pmieconf> status
 verbose: off
 enabled rules: 1 of 35
 pmie configuration file: ${PCP_SYSCONF_DIR}/pmie/config.demo
 pmie processes (PIDs) using this file: (none found)

pmieconf> quit

You can also use the status command to verify that only one rule is enabled at the end of this
step.

3. Run pmie with the new configuration file. Use a text editor to view the newly generated pmie
configuration file (${PCP_SYSCONF_DIR}/pmie/config.demo), and then run the command:

pmie -T "1.5 sec" -v -l ${HOME}/demo.log ${PCP_SYSCONF_DIR}/pmie/config.demo
memory.swap_low: false

memory.swap_low: false

cat ${HOME}/demo.log
Log for pmie on venus started Mon Jun 21 16:26:06 2012

pmie: PID = 21847, default host = venus

[Mon Jun 21 16:26:07] pmie(21847) Info: evaluator exiting

Log finished Mon Jun 21 16:26:07 2012

4. Notice that both of the pmieconf files used in the previous step are simple text files, as described
in the pmieconf(5) man page:

Chapter 5. Performance Metrics Inference Engine

70

file ${PCP_SYSCONF_DIR}/pmie/config.demo
${PCP_SYSCONF_DIR}/pmie/config.demo: PCP pmie config (V.1)
file ${PCP_VAR_DIR}/config/pmieconf/memory/swap_low
${PCP_VAR_DIR}/config/pmieconf/memory/swap_low: PCP pmieconf rules (V.1)

5.8. Management of pmie Processes
The pmie process can be run as a daemon as part of the system startup sequence, and can thus be
used to perform automated, live performance monitoring of a running system. To do this, run these
commands (as superuser):

chkconfig pmie on
${PCP_RC_DIR}/pmie start

By default, these enable a single pmie process monitoring the local host, with the default set of
pmieconf rules enabled (for more information about pmieconf, see Section 5.7, “Creating pmie
Rules with pmieconf”). Procedure 5.3, “Add a New pmie Instance to the pmie Daemon Management
Framework” illustrates how you can use these commands to start any number of pmie processes to
monitor local or remote machines.

Procedure 5.3. Add a New pmie Instance to the pmie Daemon Management Framework
1. Use a text editor (as superuser) to edit the pmie control file ${PCP_PMIECONTROL_PATH}.

Notice the default entry toward the end of the file, which looks like this:

#Host S? Log File Arguments
LOCALHOSTNAME n PCP_LOG_DIR/pmie/LOCALHOSTNAME/pmie.log -c config.default

This entry is used to enable a local pmie process. Add a new entry for a remote host on your
local network (for example, venus), by using your pmie configuration file (see Section 5.7,
“Creating pmie Rules with pmieconf”):

#Host S? Log File Arguments
venus n PCP_LOG_DIR/pmie/venus/pmie.log -c config.demo

Note
Without an absolute path, the configuration file (-c above) will be resolved using
${PCP_SYSCONF_DIR}/pmie - if config.demo was created in Procedure 5.2,
“Modify pmieconf Rules and Generate a pmie File” it would be used here for
host venus, otherwise a new configuration file will be generated using the default
rules (at ${PCP_SYSCONF_DIR}/pmie/config.demo).

2. Enable pmie daemon management:

chkconfig pmie on

This simple step allows pmie to be started as part of your machine's boot process.

Add a pmie crontab Entry

71

3. Start the two pmie daemons. At the end of this step, you should see two new pmie processes
monitoring the local and remote hosts:

${PCP_RC_DIR}/pmie start
Performance Co-Pilot starting inference engine(s) ...

Wait a few moments while the startup scripts run. The pmie start script uses the pmie_check
script to do most of its work.

Verify that the pmie processes have started:

pcp
Performance Co-Pilot configuration on pluto:

 platform: Linux pluto 3.10.0-0.rc7.64.el7.x86_64 #1 SMP
 hardware: 8 cpus, 2 disks, 23960MB RAM
 timezone: EST-10
 pmcd: Version 3.8.3-1, 8 agents
 pmda: pmcd proc xfs linux mmv infiniband gluster elasticsearch
 pmie: pluto: ${PCP_LOG_DIR}/pmie/pluto/pmie.log
 venus: ${PCP_LOG_DIR}/pmie/venus/pmie.log

If a remote host is not up at the time when pmie is started, the pmie process may exit. pmie
processes may also exit if the local machine is starved of memory resources. To counter these
adverse cases, it can be useful to have a crontab entry running. Adding an entry as shown in
Section 5.8.1, “Add a pmie crontab Entry” ensures that if one of the configured pmie processes
exits, it is automatically restarted.

Note
Depending on your platform, the crontab entry discussed here may already have
been installed for you, as part of the package installation process. In this case, the file
/etc/cron.d/pmie will exist, and the rest of this section can be skipped.

5.8.1. Add a pmie crontab Entry
To activate the maintenance and housekeeping scripts for a collection of inference engines, execute
the following tasks while logged into the local host as the superuser (root):

1. Augment the crontab file for the pcp user. For example:

crontab -l -u pcp > ${HOME}/crontab.txt

2. Edit ${HOME}/crontab.txt, adding lines similar to those from the sample ${PCP_VAR_DIR}/
config/pmie/crontab file for pmie_daily and pmie_check; for example:

daily processing of pmie logs
10 0 * * * ${PCP_BINADM_DIR}/pmie_daily
every 30 minutes, check pmie instances are running
25,55 * * * * ${PCP_BINADM_DIR}/pmie_check

3. Make these changes permanent with this command:

Chapter 5. Performance Metrics Inference Engine

72

crontab -u pcp < ${HOME}/crontab.txt

5.8.2. Global Files and Directories
The following global files and directories influence the behavior of pmie and the pmie management
scripts:

${PCP_DEMOS_DIR}/pmie/*
Contains sample pmie rules that may be used as a basis for developing local rules.

${PCP_SYSCONF_DIR}/pmie/config.default
Is the default pmie configuration file that is used when the pmie daemon facility is enabled.
Generated by pmieconf if not manually setup beforehand.

${PCP_VAR_DIR}/config/pmieconf/*/*
Contains the pmieconf rule definitions (templates) in its subdirectories.

${PCP_PMIECONTROL_PATH}
Defines which PCP collector hosts require a daemon pmie to be launched on the local host,
where the configuration file comes from, where the pmie log file should be created, and pmie
startup options.

${PCP_VAR_DIR}/config/pmlogger/crontab
Contains default crontab entries that may be merged with the crontab entries for root to
schedule the periodic execution of the pmie_check script, for verifying that pmie instances are
running. Only for platforms where a default crontab is not automatically installed during the initial
PCP package installation.

${PCP_LOG_DIR}/pmie/*
Contains the pmie log files for the host. These files are created by the default behavior of the
${PCP_RC_DIR}/pmie startup scripts.

5.8.3. pmie Instances and Their Progress
The PMCD PMDA exports information about executing pmie instances and their progress in terms of
rule evaluations and action execution rates.

pmie_check
This command is similar to the pmlogger support script, pmlogger_check.

${PCP_RC_DIR}/pmie
This start script supports the starting and stopping of multiple pmie instances that are monitoring
one or more hosts.

${PCP_TMP_DIR}/pmie
The statistics that pmie gathers are maintained in binary data structure files. These files are
located in this directory.

pmcd.pmie metrics
If pmie is running on a system with a PCP collector deployment, the PMCD PMDA exports these
metrics via the pmcd.pmie group of metrics.

Chapter 6.

73

Archive Logging
Performance monitoring and management in complex systems demands the ability to accurately
capture performance characteristics for subsequent review, analysis, and comparison. Performance
Co-Pilot (PCP) provides extensive support for the creation and management of archive logs that
capture a user-specified profile of performance information to support retrospective performance
analysis.

The following major sections are included in this chapter:

• Section 6.1, “Introduction to Archive Logging”, presents the concepts and issues involved with
creating and using archive logs.

• Section 6.2, “Using Archive Logs with Performance Tools”, describes the interaction of the PCP
tools with archive logs.

• Section 6.3, “Cookbook for Archive Logging”, shows some shortcuts for setting up useful PCP
archive logs.

• Section 6.4, “Other Archive Logging Features and Services”, provides information about other
archive logging features and sevices.

• Section 6.5, “Archive Logging Troubleshooting”, presents helpful directions if your archive logging
implementation is not functioning correctly.

6.1. Introduction to Archive Logging
Within the PCP, the pmlogger utility may be configured to collect archives of performance metrics.
The archive creation process is simple and very flexible, incorporating the following features:

• Archive log creation at either a PCP collector (typically a server) or a PCP monitor system (typically
a workstation), or at some designated PCP archive logger host.

• Concurrent independent logging, both local and remote. The performance analyst can activate
a private pmlogger instance to collect only the metrics of interest for the problem at hand,
independent of other logging on the workstation or remote host.

• Independent determination of logging frequency for individual metrics or metric instances. For
example, you could log the “5 minute” load average every half hour, the write I/O rate on the DBMS
log spindle every 10 seconds, and aggregate I/O rates on the other disks every minute.

• Dynamic adjustment of what is to be logged, and how frequently, via pmlc. This feature may be
used to disable logging or to increase the sample interval during periods of low activity or chronic
high activity. A local pmlc may interrogate and control a remote pmlogger, subject to the access
control restrictions implemented by pmlogger.

• Self-contained logs that include all system configuration and metadata required to interpret
the values in the log. These logs can be kept for analysis at a much later time, potentially after
the hardware or software has been reconfigured and the logs have been stored as discrete,
autonomous files for remote analysis. The logs are endian-neutral and platform independent - there
is no requirement that the monitor host machine used for analysis be similar to the collector machine
in any way, nor do they have to have the same versions of PCP. PCP archives created over 15
years ago can still be replayed with the current versions of PCP!

Chapter 6. Archive Logging

74

• cron-based scripts to expedite the operational management, for example, log rotation,
consolidation, and culling. Another helper tool, pmlogconf can be used to generate suitable
logging configurations for a variety of situations.

• Archive folios as a convenient aggregation of multiple archive logs. Archive folios may be created
with the mkaf utility and processed with the pmafm tool.

6.1.1. Archive Logs and the PMAPI
Critical to the success of the PCP archive logging scheme is the fact that the library routines providing
access to real-time feeds of performance metrics also provide access to the archive logs.

Live feeds (or real-time) sources of performance metrics and archives are literally interchangeable,
with a single Performance Metrics Application Programming Interface (PMAPI) that preserves the
same semantics for both styles of metric source. In this way, applications and tools developed against
the PMAPI can automatically process either live or historical performance data.

6.1.2. Retrospective Analysis Using Archive Logs
One of the most important applications of archive logging services provided by PCP is in the area of
retrospective analysis. In many cases, understanding today's performance problems can be assisted
by side-by-side comparisons with yesterday's performance. With routine creation of performance
archive logs, you can concurrently replay pictures of system performance for two or more periods in
the past.

Archive logs are also an invaluable source of intelligence when trying to diagnose what went wrong, as
in a performance post-mortem. Because the PCP archive logs are entirely self-contained, this analysis
can be performed off-site if necessary.

Each archive log contains metric values from only one host. However, many PCP tools can
simultaneously visualize values from multiple archives collected from different hosts.

The archives can be replayed using the inference engine (pmie is an application that uses the
PMAPI). This allows you to automate the regular, first-level analysis of system performance.

Such analysis can be performed by constructing suitable expressions to capture the essence of
common resource saturation problems, then periodically creating an archive and playing it against the
expressions. For example, you may wish to create a daily performance audit (perhaps run by the cron
command) to detect performance regressions.

For more about pmie, see Chapter 5, Performance Metrics Inference Engine.

6.1.3. Using Archive Logs for Capacity Planning
By collecting performance archives with relatively long sampling periods, or by reducing the daily
archives to produce summary logs, the capacity planner can collect the base data required for forward
projections, and can estimate resource demands and explore “what if” scenarios by replaying data
using visualization tools and the inference engine.

6.2. Using Archive Logs with Performance Tools
Most PCP tools default to real-time display of current values for performance metrics from PCP
collector host(s). However, most PCP tools also have the capability to display values for performance

Coordination between pmlogger and PCP tools

75

metrics retrieved from PCP archive log(s). The following sections describe plans, steps, and general
issues involving archive logs and the PCP tools.

6.2.1. Coordination between pmlogger and PCP tools
Most commonly, a PCP tool would be invoked with the -a option to process an archive log some
time after pmlogger had finished creating the archive. However, a tool such as pmchart that uses a
Time Control dialog (see Section 3.3, “Time Duration and Control”) stops when the end of archive is
reached, but could resume if more data is written to the PCP archive log.

Note
pmlogger uses buffered I/O to write the archive log so that the end of the archive
may be aligned with an I/O buffer boundary, rather than with a logical archive log
record. If such an archive was read by a PCP tool, it would appear truncated and
might confuse the tool. These problems may be avoided by sending pmlogger a
SIGUSR1 signal, or by using the flush command of pmlc to force pmlogger to
flush its output buffers.

6.2.2. Administering PCP Archive Logs Using cron Scripts
Many operating systems support the cron process scheduling system.

PCP supplies shell scripts to use the cron functionality to help manage your archive logs. The
following scripts are supplied:

Script
Description

pmlogger_daily(1)
Performs a daily housecleaning of archive logs and notices.

pmlogger_merge(1)
Merges archive logs and is called by pmlogger_daily.

pmlogger_check(1)
Checks to see that all desired pmlogger processes are running on your system, and invokes any
that are missing for any reason.

pmlogconf(1)
Generates suitable pmlogger configuration files based on a pre-defined set of templates. It can
probe the state of the system under observation to make informed decisions about which metrics
to record. This is an extensible facility, allowing software upgrades and new PMDA installations to
add to the existing set of templates.

pmsnap(1)
Generates graphic image snapshots of pmchart performance charts at regular intervals.

The configuration files used by these scripts can be edited to suit your particular needs, and are
generally controlled by the ${PCP_PMLOGGERCONTROL_PATH} file (pmsnap has an additional control
file, ${PCP_PMSNAPCONTROL_PATH}). Complete information on these scripts is available in the
pmlogger_daily(1) and pmsnap(1) man pages.

Chapter 6. Archive Logging

76

6.2.3. Archive Log File Management
PCP archive log files can occupy a great deal of disk space, and management of archive logs can be
a large task in itself. The following sections provide information to assist you in PCP archive log file
management.

6.2.3.1. Basename Conventions
When a PCP archive is created by pmlogger, an archive basename must be specified and several
physical files are created, as shown in Table 6.1, “Filenames for PCP Archive Log Components
(archive.*)”.

Filename Contents

archive.index Temporal index for rapid access to archive contents.

archive.meta Metadata descriptions for performance metrics and instance domains
appearing in the archive.

archive.N Volumes of performance metrics values, for N = 0,1,2,...

Table 6.1. Filenames for PCP Archive Log Components (archive.*)

6.2.3.2. Log Volumes
A single PCP archive may be partitioned into a number of volumes. These volumes may expedite
management of the archive; however, the metadata file and at least one volume must be present
before a PCP tool can process the archive.

You can control the size of an archive log volume by using the -v command line option to pmlogger.
This option specifies how large a volume should become before pmlogger starts a new volume.
Archive log volumes retain the same base filename as other files in the archive log, and are
differentiated by a numeric suffix that is incremented with each volume change. For example, you
might have a log volume sequence that looks like this:

netserver-log.0
netserver-log.1
netserver-log.2

You can also cause an existing log to be closed and a new one to be opened by sending a SIGHUP
signal to pmlogger, or by using the pmlc command to change the pmlogger instructions
dynamically, without interrupting pmlogger operation. Complete information on log volumes is found
in the pmlogger(1) man page.

6.2.3.3. Basenames for Managed Archive Log Files
The PCP archive management tools support a consistent scheme for selecting the basenames for the
files in a collection of archives and for mapping these files to a suitable directory hierarchy.

Once configured, the PCP tools that manage archive logs employ a consistent scheme for selecting
the basename for an archive each time pmlogger is launched, namely the current date and time in
the format YYYYMMDD.HH.MM. Typically, at the end of each day, all archives for a particular host on
that day would be merged to produce a single archive with a basename constructed from the date,
namely YYYYMMDD. The pmlogger_daily script performs this action and a number of other routine
housekeeping chores.

Archive Log File Management

77

6.2.3.4. Directory Organization for Archive Log Files
If you are using a deployment of PCP tools and daemons to collect metrics from a variety of hosts and
storing them all at a central location, you should develop an organized strategy for storing and naming
your log files.

Note
There are many possible configurations of pmlogger, as described in Section 7.3,
“PCP Archive Logger Deployment”. The directory organization described in this
section is recommended for any system on which pmlogger is configured for
permanent execution (as opposed to short-term executions, for example, as launched
from pmchart to record some performance data of current interest).

Typically, the filesystem structure can be used to reflect the number of hosts for which a pmlogger
instance is expected to be running locally, obviating the need for lengthy and cumbersome filenames.
It makes considerable sense to place all logs for a particular host in a separate directory named after
that host. Because each instance of pmlogger can only log metrics fetched from a single host, this
also simplifies some of the archive log management and administration tasks.

For example, consider the filesystem and naming structure shown in Figure 6.1, “Archive Log
Directory Structure”.

Basenam e:
20130803

PCP Archives from host one

${ PCP_LOG_DIR} /pm logger/one

Basenam e:
20130804 Basenam e:

20130805

Basenam e:
20130804

PCP Archives from host t w o

${ PCP_LOG_DIR} /pm logger/two

Basenam e:
20130805

Root Direct ory for PCP Archives

default : ${ PCP_LOG_DIR} /pm logger

Figure 6.1. Archive Log Directory Structure

The specification of where to place the archive log files for particular pmlogger instances is encoded
in the configuration file ${PCP_PMLOGGERCONTROL_PATH}, and this file should be customized on
each host running an instance of pmlogger.

If many archives are being created, and the associated PCP collector systems form peer classes
based upon service type (Web servers, DBMS servers, NFS servers, and so on), then it may be
appropriate to introduce another layer into the directory structure, or use symbolic links to group
together hosts providing similar service types.

Chapter 6. Archive Logging

78

6.2.3.5. Configuration of pmlogger
The configuration files used by pmlogger describe which metrics are to be logged. Groups of metrics
may be logged at different intervals to other groups of metrics. Two states, mandatory and advisory,
also apply to each group of metrics, defining whether metrics definitely should be logged or not
logged, or whether a later advisory definition may change that state.

The mandatory state takes precedence if it is on or off, causing any subsequent request for a
change in advisory state to have no effect. If the mandatory state is maybe, then the advisory state
determines if logging is enabled or not.

The mandatory states are on, off, and maybe. The advisory states, which only affect metrics that
are mandatory maybe, are on and off. Therefore, a metric that is mandatory maybe in one definition
and advisory on in another definition would be logged at the advisory interval. Metrics that are not
specified in the pmlogger configuration file are mandatory maybe and advisory off by default and
are not logged.

A complete description of the pmlogger configuration format can be found on the pmlogger(1) man
page.

6.2.3.6. PCP Archive Contents
Once a PCP archive log has been created, the pmdumplog utility may be used to display various
information about the contents of the archive. For example, start with the following command:

pmdumplog -l ${PCP_LOG_DIR}/pmlogger/www.sgi.com/19960731

It might produce the following output:

Log Label (Log Format Version 1)
Performance metrics from host www.sgi.com
 commencing Wed Jul 31 00:16:34.941 1996
 ending Thu Aug 1 00:18:01.468 1996

The simplest way to discover what performance metrics are contained within an archive is to use
pminfo as shown in Example 6.1, “Using pminfo to Obtain Archive Information”:

pminfo -a ${PCP_LOG_DIR}/pmlogger/www.sgi.com/19960731 network.mbuf
network.mbuf.alloc
network.mbuf.typealloc
network.mbuf.clustalloc
network.mbuf.clustfree
network.mbuf.failed
network.mbuf.waited
network.mbuf.drained

Example 6.1. Using pminfo to Obtain Archive Information

6.3. Cookbook for Archive Logging
The following sections present a checklist of tasks that may be performed to enable PCP archive
logging with minimal effort. For a complete explanation, refer to the other sections in this chapter and
the man pages for pmlogger and related tools.

Primary Logger

79

6.3.1. Primary Logger
Assume you wish to activate primary archive logging on the PCP collector host pluto. Execute the
following while logged into pluto as the superuser (root).

1. Start pmcd and pmlogger:

chkconfig pmcd on
chkconfig pmlogger on
${PCP_RC_DIR}/pmcd start
Starting pmcd ...
${PCP_RC_DIR}/pmlogger start
Starting pmlogger ...

2. Verify that the primary pmlogger instance is running:

pcp
Performance Co-Pilot configuration on pluto:

 platform: Linux pluto 3.10.0-0.rc7.64.el7.x86_64 #1 SMP
 hardware: 8 cpus, 2 disks, 23960MB RAM
 timezone: EST-10
 pmcd: Version 3.8.3-1, 8 agents
 pmda: pmcd proc xfs linux mmv infiniband gluster elasticsearch
 pmlogger: primary logger: pluto/20130815.10.00
 pmie: pluto: ${PCP_LOG_DIR}/pmie/pluto/pmie.log
 venus: ${PCP_LOG_DIR}/pmie/venus/pmie.log

3. Verify that the archive files are being created in the expected place:

ls ${PCP_LOG_DIR}/pmlogger/pluto
20130815.10.00.0
20130815.10.00.index
20130815.10.00.meta
Latest
pmlogger.log

4. Verify that no errors are being logged, and the rate of expected growth of the archives:

cat ${PCP_LOG_DIR}/pmlogger/pluto/pmlogger.log
Log for pmlogger on pluto started Thu Aug 15 10:00:11 2013

Config parsed
Starting primary logger for host "pluto"
Archive basename: 20130815.00.10

Group [26 metrics] {
 hinv.map.lvname
 ...
 hinv.ncpu
} logged once: 1912 bytes

Group [11 metrics] {
 kernel.all.cpu.user
 ...
 kernel.all.load
} logged every 60 sec: 372 bytes or 0.51 Mbytes/day

Chapter 6. Archive Logging

80

...

6.3.2. Other Logger Configurations
Assume you wish to create archive logs on the local host for performance metrics collected from the
remote host venus. Execute all of the following tasks while logged into the local host as the superuser
(root).

Procedure 6.1. Creating Archive Logs
1. Create a suitable pmlogger configuration file. There are several options:

• Run the pmlogconf(1) utility to generate a configuration file, and (optionally) interactively
customize it further to suit local needs.

${PCP_BINADM_DIR}/pmlogconf ${PCP_SYSCONF_DIR}/pmlogger/config.venus
Creating config file "${PCP_SYSCONF_DIR}/pmlogger/config.venus" using default settings

${PCP_BINADM_DIR}/pmlogconf ${PCP_SYSCONF_DIR}/pmlogger/config.venus

Group: utilization per CPU
Log this group? [n] y
Logging interval? [default]

Group: utilization (usr, sys, idle, ...) over all CPUs
Log this group? [y] y
Logging interval? [default]

Group: per spindle disk activity
Log this group? [n] y

...

• Do nothing - a default configuration will be created in the following step, using pmlogconf(1)
probing and automatic file generation based on the metrics available at the remote host. The
${PCP_RC_DIR}/pmlogger start script handles this.

• Manually - create a configuration file with a text editor, or arrange to have one put in place by
configuration management tools like Puppet1 or Chef2.

2. Edit ${PCP_PMLOGGERCONTROL_PATH}. Using the line for remote as a template, add the
following line to the file:

venus n n PCP_LOG_DIR/pmlogger/venus -r -T24h10m -c config.venus

3. Start pmlogger:

${PCP_BINADM_DIR}/pmlogger_check
Restarting pmlogger for host "venus" done

4. Verify that the pmlogger instance is running:

pcp
Performance Co-Pilot configuration on pluto:

https://puppetlabs.com/
http://www.opscode.com/chef/

Archive Log Administration

81

 platform: Linux pluto 3.10.0-0.rc7.64.el7.x86_64 #1 SMP
 hardware: 8 cpus, 2 disks, 23960MB RAM
 timezone: EST-10
 pmcd: Version 3.8.3-1, 8 agents
 pmda: pmcd proc linux xfs mmv infiniband gluster elasticsearch
 pmlogger: primary logger: pluto/20130815.10.00
 venus.redhat.com: venus/20130815.11.15
pmlc
pmlc> show loggers
The following pmloggers are running on pluto:
 primary (19144) 5141
pmlc> connect 5141
pmlc> status
pmlogger [5141] on host pluto is logging metrics from host venus
log started Thu Aug 15 11:15:39 2013 (times in local time)
last log entry Thu Aug 15 11:47:39 2013
current time Thu Aug 15 11:48:13 2013
log volume 0
log size 146160

To create archive logs on the local host for performance metrics collected from multiple remote hosts,
repeat the steps in Procedure 6.1, “Creating Archive Logs” for each remote host (each with a new
control file entry).

6.3.3. Archive Log Administration
Assume the local host has been set up to create archive logs of performance metrics collected from
one or more hosts (which may be either the local host or a remote host).

Note
Depending on your platform, the crontab entry discussed here may already have
been installed for you, as part of the package installation process. In this case, the file
/etc/cron.d/pmlogger will exist, and the rest of this section can be skipped.

To activate the maintenance and housekeeping scripts for a collection of archive logs, execute the
following tasks while logged into the local host as the superuser (root):

1. Augment the crontab file for the pcp user. For example:

crontab -l -u pcp > ${HOME}/crontab.txt

2. Edit ${HOME}/crontab.txt, adding lines similar to those from the sample ${PCP_VAR_DIR}/
config/pmlogger/crontab file for pmlogger_daily and pmlogger_check; for example:

daily processing of archive logs
10 0 * * * ${PCP_BINADM_DIR}/pmlogger_daily
every 30 minutes, check pmlogger instances are running
25,55 * * * * ${PCP_BINADM_DIR}/pmlogger_check

3. Make these changes permanent with this command:

crontab -u pcp < ${HOME}/crontab.txt

Chapter 6. Archive Logging

82

6.4. Other Archive Logging Features and Services
Other archive logging features and services include PCP archive folios, manipulating archive logs,
primary logger, and using pmlc.

6.4.1. PCP Archive Folios
A collection of one or more PCP archive logs may be combined with a control file to produce a PCP
archive folio. Archive folios are created using either mkaf or the interactive record mode services of
various PCP monitor tools (e.g. pmchart and pmcollectl).

The automated archive log management services also create an archive folio named Latest for
each managed pmlogger instance, to provide a symbolic name to the most recent archive log. With
reference to Figure 6.1, “Archive Log Directory Structure”, this would mean the creation of the folios
${PCP_LOG_DIR}/pmlogger/one/Latest and ${PCP_LOG_DIR}/pmlogger/two/Latest.

The pmafm utility is completely described in the pmafm(1) man page, and provides the interactive
commands (single commands may also be executed from the command line) for the following
services:

• Checking the integrity of the archives in the folio.

• Displaying information about the component archives.

• Executing PCP tools with their source of performance metrics assigned concurrently to all of the
component archives (where the tool supports this), or serially executing the PCP tool once per
component archive.

• If the folio was created by a single PCP monitoring tool, replaying all of the archives in the folio with
that monitoring tool.

• Restricting the processing to particular archives, or the archives associated with particular hosts.

6.4.2. Manipulating Archive Logs with pmlogextract
The pmlogextract tool takes a number of PCP archive logs from a single host and performs the
following tasks:

• Merges the archives into a single log, while maintaining the correct time stamps for all values.

• Extracts all metric values within a temporal window that could encompass several archive logs.

• Extracts only a configurable subset of metrics from the archive logs.

See the pmlogextract(1) man page for full information on this command.

6.4.3. Summarizing Archive Logs with pmlogsummary
The pmlogsummary tool provides statistical summaries of archives, or specific metrics within
archives, or specific time windows of interest in an archive. These summaries include various
averages, minima, maxima, sample counts, histogram bins, and so on.

As an example, for Linux host pluto, report on its use of anonymous huge pages - average use,
maximum, time at which maximum occured, total number of samples in the archive, and the units used
for the values - as shown in Example 6.2, “Using pmlogsummary to Summarize Archive Information”:

Primary Logger

83

pmlogsummary -MIly ${PCP_LOG_DIR}/pmlogger/pluto/20130815 mem.util.anonhugepages
Performance metrics from host pluto
 commencing Thu Aug 15 00:10:12.318 2013
 ending Fri Aug 16 00:10:12.299 2013

mem.util.anonhugepages 7987742.326 8116224.000 15:02:12.300 1437 Kbyte

pminfo -t mem.util.anonhugepages
mem.util.anonhugepages [amount of memory in anonymous huge pages]

Example 6.2. Using pmlogsummary to Summarize Archive Information

See the pmlogsummary(1) man page for detailed information about this commands many options.

6.4.4. Primary Logger
On each system for which PMCD is active (each PCP collector system), there is an option to have
a distinguished instance of the archive logger pmlogger (the “primary” logger) launched each time
PMCD is started. This may be used to ensure the creation of minimalist archive logs required for
ongoing system management and capacity planning in the event of failure of a system where a
remote pmlogger may be running, or because the preferred archive logger deployment is to activate
pmlogger on each PCP collector system.

Run the following command as superuser on each PCP collector system where you want to activate
the primary pmlogger:

chkconfig pmlogger on

The primary logger launches the next time the ${PCP_RC_DIR}/pmlogger start script runs. If you
wish this to happen immediately, follow up with this command:

${PCP_BINADM_DIR}/pmlogger_check -V

When it is started in this fashion, the ${PCP_PMLOGGERCONTROL_PATH} must use the second field
of one configuration line to designate the primary logger, and usually will also use the pmlogger
configuration file ${PCP_SYSCONF_DIR}/pmlogger/config.default (although the latter is not
mandatory).

6.4.5. Using pmlc
You may tailor pmlogger dynamically with the pmlc command (if it is configured to allow access to
this functionality). Normally, the pmlogger configuration is read at startup. If you choose to modify the
config file to change the parameters under which pmlogger operates, you must stop and restart
the program for your changes to have effect. Alternatively, you may change parameters whenever
required by using the pmlc interface.

To run the pmlc tool, enter:

pmlc

By default, pmlc acts on the primary instance of pmlogger on the current host. See the pmlc(1)
man page for a description of command line options. When it is invoked, pmlc presents you with a
prompt:

Chapter 6. Archive Logging

84

pmlc>

You may obtain a listing of the available commands by entering a question mark (?) and pressing
Enter. You see output similar to that in Example 6.3, “Listing Available Commands ”:

 show loggers [@<host>] display <pid>s of running pmloggers
 connect _logger_id [@<host>] connect to designated pmlogger
 status information about connected pmlogger
 query metric-list show logging state of metrics
 new volume start a new log volume
 flush flush the log buffers to disk
 log { mandatory | advisory } on <interval> _metric-list
 log { mandatory | advisory } off _metric-list
 log mandatory maybe _metric-list
 timezone local|logger|'<timezone>' change reporting timezone
 help print this help message
 quit exit from pmlc
 _logger_id is primary | <pid> | port <n>
 _metric-list is _metric-spec | { _metric-spec ... }
 _metric-spec is <metric-name> | <metric-name> [<instance> ...]

Here is an example:

pmlc
pmlc> show loggers @babylon
The following pmloggers are running on babylon:
 primary (1892)
pmlc> connect 1892 @babylon
pmlc> log advisory on 2 secs disk.dev.read
pmlc> query disk.dev
disk.dev.read
 adv on nl 5 min [131073 or “disk1”]
 adv on nl 5 min [131074 or “disk2”]
pmlc> quit

Example 6.3. Listing Available Commands

Note
Any changes to the set of logged metrics made via pmlc are not saved, and are
lost the next time pmlogger is started with the same configuration file. Permanent
changes are made by modifying the pmlogger configuration file(s).

Refer to the pmlc(1) and pmlogger(1) man pages for complete details.

6.5. Archive Logging Troubleshooting
The following issues concern the creation and use of logs using pmlogger.

6.5.1. pmlogger Cannot Write Log
Symptom:

The pmlogger utility does not start, and you see this message:

__pmLogNewFile: “foo.index” already exists, not over-written

Cannot Find Log

85

Cause:
Archive logs are considered sufficiently precious that pmlogger does not empty or overwrite
an existing set of archive log files. The log named foo actually consists of the physical file
foo.index, foo.meta, and at least one file foo.N, where N is in the range 0, 1, 2, 3, and so on.

A message similar to the one above is produced when a new pmlogger instance encounters one
of these files already in existence.

Resolution:
Move the existing archive aside, or if you are sure, remove all of the parts of the archive log. For
example, use the following command:

rm -f foo.*

Then rerun pmlogger.

6.5.2. Cannot Find Log
Symptom:

The pmdumplog utility, or any tool that can read an archive log, displays this message:

Cannot open archive mylog: No such file or directory

Cause:
An archive consists of at least three physical files. If the base name for the archive is mylog, then
the archive actually consists of the physical files mylog.index, mylog.meta, and at least one
file mylog.N, where N is in the range 0, 1, 2, 3, and so on.

The above message is produced if one or more of the files is missing.

Resolution:
Use this command to check which files the utility is trying to open:

ls mylog.*

Turn on the internal debug flag DBG_TRACE_LOG (-D 128) to see which files are being inspected
by the __pmOpenLog routine as shown in the following example:

pmdumplog -D 128 -l mylog

Locate the missing files and move them all to the same directory, or remove all of the files that are
part of the archive, and recreate the archive log.

6.5.3. Primary pmlogger Cannot Start
Symptom:

The primary pmlogger cannot be started. A message like the following appears:

pmlogger: there is already a primary pmlogger running

Chapter 6. Archive Logging

86

Cause:
There is either a primary pmlogger already running, or the previous primary pmlogger was
terminated unexpectedly before it could perform its cleanup operations.

Resolution:
If there is already a primary pmlogger running and you wish to replace it with a new pmlogger,
use the show command in pmlc to determine the process ID of the primary pmlogger. The
process ID of the primary pmlogger appears in parentheses after the word “primary.” Send
a SIGINT signal to the process to shut it down (use either the kill command if the platform
supports it, or the pmsignal command). If the process does not exist, proceed to the manual
cleanup described in the paragraph below. If the process did exist, it should now be possible to
start the new pmlogger.

If pmlc's show command displays a process ID for a process that does not exist, a pmlogger
process was terminated before it could clean up. If it was the primary pmlogger, the
corresponding control files must be removed before one can start a new primary pmlogger. It is a
good idea to clean up any spurious control files even if they are not for the primary pmlogger.

The control files are kept in ${PCP_TMP_DIR}/pmlogger. A control file with the process ID of
the pmlogger as its name is created when the pmlogger is started. In addition, the primary
pmlogger creates a symbolic link named primary to its control file.

For the primary pmlogger, remove both the symbolic link and the file (corresponding to its
process ID) to which the link points. For other pmloggers, remove just the process ID file. Do not
remove any other files in the directory. If the control file for an active pmlogger is removed, pmlc
is not able to contact it.

6.5.4. Identifying an Active pmlogger Process
Symptom:

You have a PCP archive log that is demonstrably growing, but do not know the identify of the
associated pmlogger process.

Cause:
The PID is not obvious from the log, or the archive name may not be obvious from the output of
the ps command.

Resolution:
If the archive basename is foo, run the following commands:

pmdumplog -l foo
Log Label (Log Format Version 1)
Performance metrics from host gonzo
 commencing Wed Aug 7 00:10:09.214 1996
 ending Wed Aug 7 16:10:09.155 1996

pminfo -a foo -f pmcd.pmlogger
pmcd.pmlogger.host
 inst [10728 or "10728"] value "gonzo"
pmcd.pmlogger.port
 inst [10728 or "10728"] value 4331
pmcd.pmlogger.archive
 inst [10728 or "10728"] value "/usr/var/adm/pcplog/gonzo/foo"

Illegal Label Record

87

All of the information describing the creator of the archive is revealed and, in particular, the
instance identifier for the PMCD metrics (10728 in the example above) is the PID of the
pmlogger instance, which may be used to control the process via pmlc.

6.5.5. Illegal Label Record
Symptom:

PCP tools report:

Illegal label record at start of PCP archive log file.

Cause:
The label record at the start of each of the physical archive log files has become either corrupted
or one is out of sync with the others.

Resolution:
If you believe the log may have been corrupted, this can be verified using pmlogcheck. If
corruption is limited to just the label record at the start, the pmloglabel can be used to force the
labels back in sync with each other, with known-good values that you supply.

Refer to the pmlogcheck(1) and pmloglabel(1) man pages.

6.5.6. Empty Archive Log Files or pmlogger Exits Immediately
Symptom:

Archive log files are zero size, requested metrics are not being logged, or pmlogger exits
immediately with no error messages.

Cause:
Either pmlogger encountered errors in the configuration file, has not flushed its output buffers yet,
or some (or all) metrics specified in the pmlogger configuration file have had their state changed
to advisory off or mandatory off via pmlc. It is also possible that the logging interval specified in
the pmlogger configuration file for some or all of the metrics is longer than the period of time you
have been waiting since pmlogger started.

Resolution:
If pmlogger exits immediately with no error messages, check the pmlogger.log file in the
directory pmlogger was started in for any error messages. If pmlogger has not yet flushed its
buffers, enter one of the following commands (depending on platform support):

killall -SIGUSR1 pmlogger
${PCP_BINADM_DIR}/pmsignal -a -s USR1 pmlogger

Otherwise, use the status command for pmlc to interrogate the internal pmlogger state of
specific metrics.

88

Chapter 7.

89

Performance Co-Pilot Deployment
Strategies
Performance Co-Pilot (PCP) is a coordinated suite of tools and utilities allowing you to monitor
performance and make automated judgments and initiate actions based on those judgments. PCP is
designed to be fully configurable for custom implementation and deployed to meet specific needs in a
variety of operational environments.

Because each enterprise and site is different and PCP represents a new way of managing
performance information, some discussion of deployment strategies is useful.

The most common use of performance monitoring utilities is a scenario where the PCP tools are
executed on a workstation (the PCP monitoring system), while the interesting performance data is
collected on remote systems (PCP collector systems) by a number of processes, specifically the
Performance Metrics Collection Daemon (PMCD) and the associated Performance Metrics Domain
Agents (PMDAs). These processes can execute on both the monitoring system and one or more
collector systems, or only on collector systems. However, collector systems are the real objects of
performance investigations.

The material in this chapter covers the following areas:

• Section 7.1, “Basic Deployment”, presents the spectrum of deployment architectures at the highest
level.

• Section 7.2, “PCP Collector Deployment”, describes alternative deployments for PMCD and the
PMDAs.

• Section 7.3, “PCP Archive Logger Deployment”, covers alternative deployments for the pmlogger
tool.

• Section 7.4, “PCP Inference Engine Deployment”, presents the options that are available for
deploying the pmie tool.

The options shown in this chapter are merely suggestions. They are not comprehensive, and
are intended to demonstrate some possible ways of deploying the PCP tools for specific network
topologies and purposes. You are encouraged to use them as the basis for planning your own
deployment, consistent with your needs.

7.1. Basic Deployment
In the simplest PCP deployment, one system is configured as both a collector and a monitor, as shown
in Figure 7.1, “PCP Deployment for a Single System”. Because some of the PCP monitor tools make
extensive use of visualization, this suggests the monitor system should be configured with a graphical
display.

Chapter 7. Performance Co-Pilot Deployment Strategies

90

Monitor Tool

PMCD

Monitor and Collector System

PMDAs

Monitor Tool

Figure 7.1. PCP Deployment for a Single System

However, most PCP deployments involve at least two systems. For example, the setup shown in
Figure 7.2, “Basic PCP Deployment for Two Systems” would be representative of many common
scenarios.

PMCD

Collector System

PMDAs

Monitor Tool

Monitor System

Monitor Tool

Figure 7.2. Basic PCP Deployment for Two Systems

But the most common site configuration would include a mixture of systems configured as PCP
collectors, as PCP monitors, and as both PCP monitors and collectors, as shown in Figure 7.3,
“General PCP Deployment for Multiple Systems ”.

With one or more PCP collector systems and one or more PCP monitor systems, there are a number
of decisions that need to be made regarding the deployment of PCP services across multiple hosts.
For example, in Figure 7.3, “General PCP Deployment for Multiple Systems ” there are several ways in
which both the inference engine (pmie) and the PCP archive logger (pmlogger) could be deployed.
These options are discussed in the following sections of this chapter.

PCP Collector Deployment

91

PMCD

Collector System

PMDAs

Monitor Tool

Monitor System

Monitor Tool

Monitor Tool

Monitor System

Monitor Tool

PMCD

Collector System

PMDAs

PMCD

Collector System

PMDAs

Figure 7.3. General PCP Deployment for Multiple Systems

7.2. PCP Collector Deployment
Each PCP collector system must have an active pmcd and, typically, a number of PMDAs installed.

7.2.1. Principal Server Deployment
The first hosts selected as PCP collector systems are likely to provide some class of service deemed
to be critical to the information processing activities of the enterprise. These hosts include:

• Database servers

• Web servers for an Internet or Intranet presence

• NFS or other central storage server

• A video server

• A supercomputer

• An infrastructure service provider, for example, print, DNS, LDAP, gateway, firewall, router, or mail
services

• Any system running a mission-critical application

Your objective may be to improve quality of service on a system functioning as a server for many
clients. You wish to identify and repair critical performance bottlenecks and deficiencies in order to
maintain maximum performance for clients of the server.

For some of these services, the PCP base product or the PCP add-on packages provide the
necessary collector components. Others would require customized PMDA development, as described
in the companion Performance Co-Pilot Programmer's Guide.

Chapter 7. Performance Co-Pilot Deployment Strategies

92

7.2.2. Quality of Service Measurement
Applications and services with a client-server architecture need to monitor performance at both the
server side and the client side.

The arrangement in Figure 7.4, “PCP Deployment to Measure Client-Server Quality of Service”
illustrates one way of measuring quality of service for client-server applications.

PMCD

Applicat ion Client System

PMDA

PCP Monitor System

Monitor Tool

Applicat ion Server System

PMCD

PMDAs

Applicat ion
Server

Client
Applicat ion

Figure 7.4. PCP Deployment to Measure Client-Server Quality of Service

The configuration of the PCP collector components on the Application Server System is standard. The
new facility is the deployment of some PCP collector components on the Application Client System;
this uses a customized PMDA and a generalization of the ICMP “ping” tool as follows:

• The Client App is specially developed to periodically make typical requests of the App Server,
and to measure the response time for these requests (this is an application-specific “ping”).

• The PMDA on the Application Client System captures the response time measurements from the
Client App and exports these into the PCP framework.

At the PCP monitor system, the performance of the system running the App Server and the end-
user quality of service measurements from the system where the Client App is running can be
monitored concurrently.

PCP contains a number of examples of this architecture, including the shping PMDA for IP-based
services (including HTTP), and the dbping PMDA for database servers.

The source code for each of these PMDAs is readily available; users and administrators are
encouraged to adapt these agents to the needs of the local application environment.

It is possible to exploit this arrangement even further, with these methods:

• Creating new instances of the Client App and PMDA to measure service quality for your own
mission-critical services.

PCP Archive Logger Deployment

93

• Deploying the Client App and associated PCP collector components in a number of strategic
hosts allows the quality of service over the enterprise's network to be monitored. For example,
service can be monitored on the Application Server System, on the same LAN segment as the
Application Server System, on the other side of a firewall system, or out in the WAN.

7.3. PCP Archive Logger Deployment
PCP archive logs are created by the pmlogger utility, as discussed in Chapter 6, Archive Logging.
They provide a critical capability to perform retrospective performance analysis, for example, to detect
performance regressions, for problem analysis, or to support capacity planning. The following sections
discuss the options and trade-offs for pmlogger deployment.

7.3.1. Deployment Options
The issue is relatively simple and reduces to “On which host(s) should pmlogger be running?” The
options are these:

• Run pmlogger on each PCP collector system to capture local performance data.

• Run pmlogger on some of the PCP monitor systems to capture performance data from remote
PCP collector systems.

• As an extension of the previous option, designate one system to act as the PCP archive site to run
all pmlogger instances. This arrangement is shown in Figure 7.5, “Designated PCP Archive Site”.

pm logger

Monitor and Collector System

pm logger

PMCD

Collector System

PMDAs

PMCD

Collector System

PMDAs

PCP Archive Log

PCP Archive Log

Figure 7.5. Designated PCP Archive Site

7.3.2. Resource Demands for the Deployment Options
The pmlogger process is very lightweight in terms of computational demand; most of the (very small)
CPU cost is associated with extracting performance metrics at the PCP collector system (PMCD and
the PMDAs), which are independent of the host on which pmlogger is running.

A local pmlogger consumes disk bandwidth and disk space on the PCP collector system. A remote
pmlogger consumes disk space on the site where it is running and network bandwidth between that
host and the PCP collector host.

Chapter 7. Performance Co-Pilot Deployment Strategies

94

The archive logs typically grow at a rate of anywhere between a few kilobytes (KB) to tens of
megabytes (MB) per day, depending on how many performance metrics are logged and the choice
of sampling frequencies. There are some advantages in minimizing the number of hosts over which
the disk resources for PCP archive logs must be allocated; however, the aggregate requirement is
independent of where the pmlogger processes are running.

7.3.3. Operational Management
There is an initial administrative cost associated with configuring each pmlogger instance, and an
ongoing administrative investment to monitor these configurations, perform regular housekeeping
(such as rotation, compression, and culling of PCP archive log files), and execute periodic tasks to
process the archives (such as nightly performance regression checking with pmie).

Many of these tasks are handled by the supplied pmlogger administrative tools and scripts, as
described in Section 6.2.3, “Archive Log File Management”. However, the necessity and importance
of these tasks favor a centralized pmlogger deployment, as shown in Figure 7.5, “Designated PCP
Archive Site”.

7.3.4. Exporting PCP Archive Logs
Collecting PCP archive logs is of little value unless the logs are processed as part of the ongoing
performance monitoring and management functions. This processing typically involves the use of the
tools on a PCP monitor system, and hence the archive logs may need to be read on a host different
from the one they were created on.

NFS mounting is obviously an option, but the PCP tools support random access and both forward
and backward temporal motion within an archive log. If an archive is to be subjected to intensive and
interactive processing, it may be more efficient to copy the files of the archive log to the PCP monitor
system first.

Note
Each PCP archive log consists of at least three separate files (see Section 6.2.3,
“Archive Log File Management” for details). You must have concurrent access to all of
these files before a PCP tool is able to process an archive log correctly.

7.4. PCP Inference Engine Deployment
The pmie utility supports automated reasoning about system performance, as discussed in Chapter 5,
Performance Metrics Inference Engine, and plays a key role in monitoring system performance for
both real-time and retrospective analysis, with the performance data being retrieved respectively from
a PCP collector system and a PCP archive log.

The following sections discuss the options and trade-offs for pmie deployment.

7.4.1. Deployment Options
The issue is relatively simple and reduces to “On which host(s) should pmie be running?” You must
consider both real-time and retrospective uses, and the options are as follows:

• For real-time analysis, run pmie on each PCP collector system to monitor local system
performance.

Resource Demands for the Deployment Options

95

• For real-time analysis, run pmie on some of the PCP monitor systems to monitor the performance
of remote PCP collector systems.

• For retrospective analysis, run pmie on the systems where the PCP archive logs reside. The
problem then reduces to pmlogger deployment as discussed in Section 7.3, “PCP Archive Logger
Deployment”.

• As an example of the “distributed management with centralized control” philosophy, designate
some system to act as the PCP Management Site to run all pmlogger and pmie instances. This
arrangement is shown in Figure 7.6, “PCP Management Site Deployment”.

One pmie instance is capable of monitoring multiple PCP collector systems; for example, to evaluate
some universal rules that apply to all hosts. At the same time a single PCP collector system may be
monitored by multiple pmie instances; for example, for site-specific and universal rule evaluation, or to
support both tactical performance management (operations) and strategic performance management
(capacity planning). Both situations are depicted in Figure 7.6, “PCP Management Site Deployment”.

pm logger

PCP Managem ent Site

pm logger

PMCD

Collector System A

PMDAs

PMCD

Collector System B

PMDAs

PCP Archive Log

PCP Archive Log

pm ie

pm ie

pm ie Rules

pm ie Rules

Figure 7.6. PCP Management Site Deployment

7.4.2. Resource Demands for the Deployment Options
Depending on the complexity of the rule sets, the number of hosts being monitored, and the evaluation
frequency, pmie may consume CPU cycles significantly above the resources required to simply fetch
the values of the performance metrics. If this becomes significant, then real-time deployment of pmie
away from the PCP collector systems should be considered in order to avoid the “you're part of the
problem, not the solution” scenario in terms of CPU utilization on a heavily loaded server.

Chapter 7. Performance Co-Pilot Deployment Strategies

96

7.4.3. Operational Management
An initial administrative cost is associated with configuring each pmie instance, particularly in the
development of the rule sets that accurately capture and classify “good” versus “bad” performance in
your environment. These rule sets almost always involve some site-specific knowledge, particularly
in respect to the “normal” levels of activity and resource consumption. The pmieconf tool (see
Section 5.7, “Creating pmie Rules with pmieconf”) may be used to help develop localized rules
based upon parameterized templates covering many common performance scenarios. In complex
environments, customizing these rules may occur over an extended period and require considerable
performance analysis insight.

One of the functions of pmie provides for continual detection of adverse performance and the
automatic generation of alarms (visible, audible, e-mail, pager, and so on). Uncontrolled deployment of
this alarm initiating capability throughout the enterprise may cause havoc.

These considerations favor a centralized pmie deployment at a small number of PCP monitor sites, or
in a PCP Management Site as shown in Figure 7.6, “PCP Management Site Deployment”.

However, it is most likely that knowledgeable users with specific needs may find a local deployment
of pmie most useful to track some particular class of service difficulty or resource utilization. In these
cases, the alarm propagation is unlikely to be required or is confined to the system on which pmie is
running.

Configuration and management of a number of pmie instances is made much easier with the scripts
and control files described in Section 5.8, “Management of pmie Processes”.

Chapter 8.

97

Customizing and Extending PCP
Services
Performance Co-Pilot (PCP) has been developed to be fully extensible. The following sections
summarize the various facilities provided to allow you to extend and customize PCP for your site:

• Section 8.1, “PMDA Customization”, describes the procedure for customizing the summary PMDA
to export derived metrics formed by aggregation of base PCP metrics from one or more collector
hosts.

• Section 8.2, “PCP Tool Customization”, describes the various options available for customizing and
extending the basic PCP tools.

• Section 8.3, “PMNS Management”, covers the concepts and tools provided for updating the PMNS
(Performance Metrics Name Space).

• Section 8.4, “PMDA Development”, details where to find further information to assist in the
development of new PMDAs to extend the range of performance metrics available through the PCP
infrastructure.

• Section 8.5, “PCP Tool Development”, outlines how new tools may be developed to process
performance data from the PCP infrastructure.

8.1. PMDA Customization
The generic procedures for installing and activating the optional PMDAs have been described
in Section 2.3, “Managing Optional PMDAs”. In some cases, these procedures prompt the user
for information based upon the local system or network configuration, application deployment, or
processing profile to customize the PMDA and hence the performance metrics it exports.

The summary PMDA is a special case that warrants further discussion.

8.1.1. Customizing the Summary PMDA
The summary PMDA exports performance metrics derived from performance metrics made available
by other PMDAs. It is described completely in the pmdasummary(1) man page.

The summary PMDA consists of two processes:

pmie process
Periodically samples the base metrics and compute values for the derived metrics. This dedicated
instance of the PCP pmie inference engine is launched with special command line arguments by
the main process. See Section 5.1, “Introduction to pmie”, for a complete discussion of the pmie
feature set.

main process
Reads and buffers the values computed by the pmie process and makes them available to the
Performance Metrics Collection Daemon (PMCD).

All of the metrics exported by the summary PMDA have a singular instance and the values are
instantaneous; the exported value is the correct value as of the last time the corresponding expression
was evaluated by the pmie process.

Chapter 8. Customizing and Extending PCP Services

98

The summary PMDA resides in the ${PCP_PMDAS_DIR}/summary directory and may be installed
with a default configuration by following the steps described in Section 2.3.1, “PMDA Installation on a
PCP Collector Host”.

Alternatively, you may customize the summary PMDA to export your own derived performance metrics
by following the steps in Procedure 8.1, “Customizing the Summary PMDA”:

Procedure 8.1. Customizing the Summary PMDA
1. Check that the symbolic constant SYSSUMMARY is defined in the ${PCP_VAR_DIR}/pmns/

stdpmid file. If it is not, perform the postinstall update of this file, as superuser:

cd ${PCP_VAR_DIR}/pmns
./Make.stdpmid

2. Choose Performance Metric Name Space (PMNS) names for the new metrics. These must begin
with summary and follow the rules described in the pmns(5) man page. For example, you might
use summary.fs.cache_write and summary.fs.cache_hit.

3. Edit the pmns file in the ${PCP_PMDAS_DIR}/summary directory to add the new metric names
in the format described in the pmns(5) man page. You must choose a unique performance
metric identifier (PMID) for each metric. In the pmns file, these appear as SYSSUMMARY:0:x. The
value of x is arbitrary in the range 0 to 1023 and unique in this file. Refer to Section 8.3, “PMNS
Management”, for a further explanation of the rules governing PMNS updates.

For example:

summary {
 cpu
 disk
 netif
 fs /*new*/
}
summary.fs {
 cache_write SYSSUMMARY:0:10
 cache_hit SYSSUMMARY:0:11
}

4. Use the local test PMNS root and validate that the PMNS changes are correct.

For example, enter this command:

pminfo -n root -m summary.fs

You see output similar to the following:

summary.fs.cache_write PMID: 27.0.10
summary.fs.cache_hit PMID: 27.0.11

5. Edit the ${PCP_PMDAS_DIR}/summary/expr.pmie file to add new pmie expressions. If
the name to the left of the assignment operator (=) is one of the PMNS names, then the pmie
expression to the right will be evaluated and returned by the summary PMDA. The expression
must return a numeric value. Additional description of the pmie expression syntax may be found
in Section 5.3, “Specification Language for pmie”.

Customizing the Summary PMDA

99

For example, consider this expression:

// filesystem buffer cache hit percentages
prefix = "kernel.all.io"; // macro, not exported
summary.fs.cache_write =
 100 - 100 * $prefix.bwrite / $prefix.lwrite;
summary.fs.cache_hit =
 100 - 100 * $prefix.bread / $prefix.lread;

6. Run pmie in debug mode to verify that the expressions are being evaluated correctly, and the
values make sense.

For example, enter this command:

pmie -t 2sec -v expr.pmie

You see output similar to the following:

summary.fs.cache_write: ?
summary.fs.cache_hit: ?
summary.fs.cache_write: 45.83
summary.fs.cache_hit: 83.2
summary.fs.cache_write: 39.22
summary.fs.cache_hit: 84.51

7. Install the new PMDA.

From the ${PCP_PMDAS_DIR}/summary directory, use this command:

./Install

You see the following output:

You need to choose an appropriate configuration for installation of
the “summary” Performance Metrics Domain Agent (PMDA).

collector collect performance statistics on this system
monitor allow this system to monitor local and/or remote systems
both collector and monitor configuration for this system

Please enter c(ollector) or m(onitor) or b(oth) [b] both
Interval between summary expression evaluation (seconds)? [10] 10
Updating the Performance Metrics Name Space...
Installing pmchart view(s) ...
Terminate PMDA if already installed ...
Installing files ..
Updating the PMCD control file, and notifying PMCD ...
Wait 15 seconds for the agent to initialize ...
Check summary metrics have appeared ... 8 metrics and 8 values

8. Check the metrics.

For example, enter this command:

Chapter 8. Customizing and Extending PCP Services

100

pmval -t 5sec -s 8 summary.fs.cache_write

You see a response similar to the following:

metric: summary.fs.cache_write
host: localhost
semantics: instantaneous value
units: none
samples: 8
interval: 5.00 sec
63.60132158590308
62.71878646441073
62.71878646441073
58.73968492123031
58.73968492123031
65.33822758259046
65.33822758259046
72.6099706744868

Note that the values are being sampled here by pmval every 5 seconds, but pmie is passing only
new values to the summary PMDA every 10 seconds. Both rates could be changed to suit the
dynamics of your new metrics.

9. You may now create pmchart views, pmie rules, and pmlogger configurations to monitor and
archive your new performance metrics.

8.2. PCP Tool Customization
Performance Co-Pilot (PCP) has been designed and implemented with a philosophy that embraces
the notion of toolkits and encourages extensibility.

In most cases, the PCP tools provide orthogonal services, based on external configuration files. It is
the creation of new and modified configuration files that enables PCP users to customize tools quickly
and meet the needs of the local environment, in many cases allowing personal preferences to be
established for individual users on the same PCP monitor system.

The material in this section is intended to act as a checklist of pointers to detailed documentation
found elsewhere in this guide, in the man pages, and in the files that are made available as part of the
PCP installation.

8.2.1. Archive Logging Customization
The PCP archive logger is presented in Chapter 6, Archive Logging, and documented in the
pmlogger(1) man page.

The following global files and directories influence the behavior of pmlogger:

${PCP_SYSCONF_DIR}/pmlogger
Enable/disable state for the primary logger facility using this command:

chkconfig pmlogger on

Inference Engine Customization

101

${PCP_SYSCONF_DIR}/pmlogger/config.default
The default pmlogger configuration file that is used for the primary logger when this facility is
enabled.

${PCP_VAR_DIR}/config/pmlogconf/tools
Every PCP tool with a fixed group of performance metrics contributes a pmlogconf
configuration file that includes each of the performance metrics used in the tool, for example,
${PCP_VAR_DIR}/config/pmlogconf/pmstat for pmstat.

${PCP_PMLOGGERCONTROL_PATH}
Defines which PCP collector hosts require pmlogger to be launched on the local host, where
the configuration file comes from, where the archive log files should be created, and pmlogger
startup options.

This control file supports the starting and stopping of multiple pmlogger instances that monitor
local or remote hosts.

/etc/cron.d/pmlogger or ${PCP_VAR_DIR}/config/pmlogger/crontab
Default crontab entries that may be merged with the crontab entries for the pcp user
to schedule the periodic execution of the archive log management scripts, for example,
pmlogger_daily.

${PCP_LOG_DIR}/pmlogger/somehost
The default behavior of the archive log management scripts create archive log files for the host
somehost in this directory.

${PCP_LOG_DIR}/pmlogger/somehost/Latest
A PCP archive folio for the most recent archive for the host somehost. This folio is created
and maintained by the cron-driven periodic archive log management scripts, for example,
pmlogger_check. Archive folios may be processed with the pmafm tool.

8.2.2. Inference Engine Customization
The PCP inference engine is presented in Chapter 5, Performance Metrics Inference Engine, and
documented in the pmie(1) man page.

The following global files and directories influence the behavior of pmie:

${PCP_SYSCONF_DIR}/pmie
Controls the pmie daemon facility. Enable using this command:

chkconfig pmie on

${PCP_SYSCONF_DIR}/pmie/config.default
The pmie configuration file that is used for monitoring the local host when the pmie daemon
facility is enabled in the default configuration. This file is created using pmieconf the first time the
daemon facility is activated.

${PCP_PMIECONTROL_PATH}
Defines which PCP collector hosts require a daemon pmie to be monitoring from the local host,
where the configuration files comes from, where the pmie log file should be created, and pmie
startup options.

Chapter 8. Customizing and Extending PCP Services

102

This control file supports the starting and stopping of multiple pmie instances that are each
monitoring one or more hosts.

${PCP_VAR_DIR}/config/pmieconf/*/*
Each pmieconf rule definition can be found below one of these subdirectories.

/etc/cron.d/pmie or ${PCP_VAR_DIR}/config/pmie/crontab
Default crontab entries that may be merged with the crontab entries for the pcp user to
schedule the periodic execution of the pmie_check and pmie_daily scripts, for verifying that
pmie instances are running and logs rotated.

${PCP_LOG_DIR}/pmie/somehost
The default behavior of the ${PCP_RC_DIR}/pmie startup scripts create pmie log files for the
host somehost in this directory.

pmie_check and pmie_daily
These commands are similar to the pmlogger support scripts, pmlogger_check and
pmlogger_daily.

${PCP_TMP_DIR}/pmie
The statistics that pmie gathers are maintained in binary data structure files. These files can be
found in the ${PCP_TMP_DIR}/pmie directory.

pmcd.pmie metrics
The PMCD PMDA exports information about executing pmie processes and their progress in
terms of rule evaluations and action execution rates.

If pmie is running on a system with a PCP collector deployment, the pmcd PMDA exports these
metrics via the pmcd.pmie group of metrics.

8.3. PMNS Management
This section describes the syntax, semantics, and processing framework for the external specification
of a Performance Metrics Name Space (PMNS) as it might be loaded by the PMAPI routine
pmLoadNameSpace; see the pmLoadNameSpace(3) man page. This is usually done only by pmcd,
except in rare circumstances such as Section 8.1.1, “Customizing the Summary PMDA”.

The PMNS specification is a simple text source file that can be edited easily. For reasons of efficiency,
a binary format is also supported; the utility pmnscomp translates the ASCII source format into binary
format; see the pmnscomp(1) man page.

8.3.1. PMNS Processing Framework
The PMNS specification is initially passed through pmcpp(1). This means the following facilities may
be used in the specification:

• C-style comments

• #include directives

• #define directives and macro substitution

• Conditional processing with #ifdef, #ifndef, #endif, and #undef

PMNS Syntax

103

When pmcpp(1) is executed, the standard include directories are the current directory and
${PCP_VAR_DIR}/pmns, where some standard macros and default specifications may be found.

8.3.2. PMNS Syntax
Every PMNS is tree structured. The paths to the leaf nodes are the performance metric names. The
general syntax for a non-leaf node in PMNS is as follows:

pathname {
 name [pmid]
 ...
}

Here pathname is the full pathname from the root of the PMNS to this non-leaf node, with each
component in the path separated by a period. The root node for the PMNS has the special name
root, but the prefix string root. must be omitted from all other pathnames.

For example, refer to the PMNS shown in Figure 8.1, “Small Performance Metrics Name Space
(PMNS)”. The correct pathname for the rightmost non-leaf node is cpu.utilization, not
root.cpu.utilization.

root

cpunetwork

ut ilizat ion

in out idleuser sys

packetsinterrupts syscalls

Figure 8.1. Small Performance Metrics Name Space (PMNS)

Each component in the pathname must begin with an alphabetic character and be followed by zero
or more alphanumeric characters or the underscore (_) character. For alphabetic characters in a
component, uppercase and lowercase are significant.

Non-leaf nodes in the PMNS may be defined in any order desired. The descendent nodes are defined
by the set of names, relative to the pathname of their parent non-leaf node. For descendent nodes,
leaf nodes have a pmid specification, but non-leaf nodes do not.

The syntax for the pmid specification was chosen to help manage the allocation of Performance
Metric IDs (PMIDs) across disjoint and autonomous domains of administration and implementation.
Each pmid consists of three integers separated by colons, for example, 14:27:11. This is intended
to mirror the implementation hierarchy of performance metrics. The first integer identifies the domain
in which the performance metric lies. Within a domain, related metrics are often grouped into clusters.
The second integer identifies the cluster, and the third integer, the metric within the cluster.

Chapter 8. Customizing and Extending PCP Services

104

The PMNS specification for Figure 8.1, “Small Performance Metrics Name Space (PMNS)” is shown in
Example 8.1, “PMNS Specification”:

/*
* PMNS Specification
*/
#define KERNEL 1
root {
 network
 cpu
}
#define NETWORK 26
network {
 interrupts KERNEL:NETWORK:1
 packets
}
network.packets {
 in KERNEL:NETWORK:35
 out KERNEL:NETWORK:36
}
#define CPU 10
cpu {
 syscalls KERNEL:CPU:10
 utilization
}
#define USER 20
#define SYSTEM 21
#define IDLE 22
cpu.utilization {
 user KERNEL:CPU:USER
 sys KERNEL:CPU:SYSTEM
 idle KERNEL:CPU:IDLE
}

Example 8.1. PMNS Specification

For complete documentation of the PMNS and associated utilities, see the pmns(5), pmnsadd(1),
pmnsdel(1) and pmnsmerge(1) man pages.

8.4. PMDA Development
Performance Co-Pilot (PCP) is designed to be extensible at the collector site.

Application developers are encouraged to create new PMDAs to export performance metrics from
the applications and service layers that are particularly relevant to a specific site, application suite, or
processing environment.

These PMDAs use the routines of the libpcp_pmda library, which is discussed in detail in the
Performance Co-Pilot Programmer's Guide.

8.5. PCP Tool Development
Performance Co-Pilot (PCP) is designed to be extensible at the monitor site.

Application developers are encouraged to create new PCP client applications to monitor or display
performance metrics in a manner that is particularly relevant to a specific site, application suite, or
processing environment.

PCP Tool Development

105

Client applications use the routines of the PMAPI (performance metrics application programming
interface) described in the Performance Co-Pilot Programmer's Guide. At the time of writing, native
PMAPI interfaces are available for the C, C++ and Python languages.

106

107

Appendix A. Acronyms
Table A.1, “Performance Co-Pilot Acronyms and Their Meanings ” provides a list of the acronyms used
in the Performance Co-Pilot (PCP) documentation, help cards, man pages, and user interface.

Acronym Meaning

API Application Programming Interface

DBMS Database Management System

DNS Domain Name Service

DSO Dynamic Shared Object

I/O Input/Output

IPC Interprocess Communication

PCP Performance Co-Pilot

PDU Protocol data unit

PMAPI Performance Metrics Application Programming Interface

PMCD Performance Metrics Collection Daemon

PMD Performance Metrics Domain

PMDA Performance Metrics Domain Agent

PMID Performance Metric Identifier

PMNS Performance Metrics Name Space

TCP/IP Transmission Control Protocol/Internet Protocol

Table A.1. Performance Co-Pilot Acronyms and Their Meanings

108

109

Index
*_inst operator Arithmetic Aggregation
*_sample operator Arithmetic Aggregation
2D tools Monitoring System Performance
64-bit IEEE format Descriptions for Performance
Metrics
pmGetConfig function PCP Environment
Variables
acronyms Acronyms
active pmlogger process Identifying an Active
pmlogger Process
adaptation Dynamic Adaptation to Change
application programs Application and Agent
Development Sources of Performance Metrics
and Their Domains
archive logs

administration Archive Log Administration
analysis Logging and Retrospective Analysis
capacity planning Using Archive Logs for
Capacity Planning
collection time Current Metric Context
contents PCP Archive Contents
creation Collecting, Transporting, and
Archiving Performance Information
customization Automated Operational Support
Archive Logging Customization
export Exporting PCP Archive Logs
fetching metrics Fetching Metrics from an
Archive Log
file management Archive Log File
Management
folios PCP Archive Folios
physical filenames Fetching Metrics from an
Archive Log
PMAPI Archive Logs and the PMAPI
retrospective analysis Retrospective Analysis
Using Archive Logs
troubleshooting Archive Logging
Troubleshooting
usage Archive Logging

arithmetic aggregation Arithmetic Aggregation
arithmetic expressions pmie Arithmetic
Expressions
audience Empowering the PCP User
audits Automated Operational Support
automated operational support Automated
Operational Support
avg_host operator Arithmetic Aggregation
basename conventions Basename Conventions
Boolean expressions Boolean Expressions

capacity planning Using Archive Logs for
Capacity Planning
caveats Caveats and Notes on pmie
centralized archive logging Automated
Operational Support
coverage Metric Coverage
chkhelp tool Application and Agent Development
client-server architecture PCP Distributed
Operation
collection time Current Metric Context
collector hosts Distributed Collection Collector
and Monitor Roles PMDA Installation on a PCP
Collector Host
comments Comments
common directories Common Directories and File
Locations
component software Overview of Component
Software
conceptual foundations Conceptual Foundations
configuring PCP Installing and Configuring
Performance Co-Pilot
conventions Common Conventions and
Arguments
cookbook Cookbook for Archive Logging
count_host operator Arithmetic Aggregation
cron scripts Introduction to Archive Logging
Administering PCP Archive Logs Using cron
Scripts
customization

archive logs Archive Logging Customization
inference engine Inference Engine
Customization
PCP services Customizing and Extending PCP
Services

data collection tools Collecting, Transporting, and
Archiving Performance Information
dbpmda tool Application and Agent Development
debugging tools Operational and Infrastructure
Support
deployment strategies Performance Co-Pilot
Deployment Strategies
diagnostic tools Operational and Infrastructure
Support
DISPLAY variable pmie Rule Expressions
distributed collection Distributed Collection
domains Unification of Performance Metric
Domains
DSO Acronyms
duration Performance Monitor Reporting
Frequency and Duration

Index

110

dynamic adaptation Dynamic Adaptation to
Change
environ man page Timezone Options
environment variables PCP Environment
Variables
error detection pmie Error Detection
${PCP_PMLOGGERCONTROL_PATH} file
Primary Logger
${PCP_DIR}/etc/pcp.conf file Common
Directories and File Locations PCP Environment
Variables
${PCP_DIR}/etc/pcp.env file Common Directories
and File Locations PCP Environment Variables
${PCP_RC_DIR}/pmcd file Common Directories
and File Locations
evaluation frequency Setting Evaluation
Frequency
extensibility PCP Extensibility Customizing and
Extending PCP Services
external equipment Sources of Performance
Metrics and Their Domains
fetching metrics Fetching Metrics from Another
Host Fetching Metrics from an Archive Log
file locations Common Directories and File
Locations
firewalls Running PCP Tools through a Firewall
flush command Coordination between pmlogger
and PCP tools
folios PCP Archive Folios
functional domains Sources of Performance
Metrics and Their Domains
glossary Acronyms
illegal label record Illegal Label Record
inference engine Inference Engine Customization
infrastructure support tools Operational and
Infrastructure Support
installing PCP Installing and Configuring
Performance Co-Pilot
intrinsic operators pmie Intrinsic Operators
I/O Acronyms
IPC Acronyms
kill command Primary pmlogger Cannot Start
layered software services Sources of
Performance Metrics and Their Domains
lexical elements Lexical Elements
libpcp_mmv library Product Extensibility
libpcp_pmda library Product Extensibility
log volumes Log Volumes
logging (see archive logs)
logical constants Logical Constants
logical expressions pmie Logical Expressions

macros Macros
man command

usage Monitoring System Performance
max_host operator Arithmetic Aggregation
metadata Descriptions for Performance Metrics
metric domains Unification of Performance Metric
Domains
metric wraparound Performance Metrics
Wraparound
min_host operator Arithmetic Aggregation
mkaf tool Collecting, Transporting, and Archiving
Performance Information Introduction to Archive
Logging
monitor configuration Product Structure
monitor hosts Collector and Monitor Roles
monitoring system performance Monitoring
System Performance
naming scheme Uniform Naming and Access to
Performance Metrics
netstat command PMCD Does Not Start
network routers and bridges Sources of
Performance Metrics and Their Domains
network transportation tools Collecting,
Transporting, and Archiving Performance
Information
newhelp tool Application and Agent Development
Mail servers Sources of Performance Metrics and
Their Domains
objectives Objectives
operational support tools Operational and
Infrastructure Support
operators Quantification Operators
overview Introduction to Performance Co-Pilot
pmatop tool

brief description Performance Monitoring and
Visualization

pmcd.options file The pmcd.options File
PCP

acronym Acronyms
archive logger deployment PCP Archive
Logger Deployment
collector deployment PCP Collector
Deployment
configuring and installing Installing and
Configuring Performance Co-Pilot
conventions Common Conventions and
Arguments
distributed operation PCP Distributed
Operation
environment variables PCP Environment
Variables

111

extensibility PCP Extensibility Product
Extensibility
features Introduction to Performance Co-Pilot
log file option Fetching Metrics from an Archive
Log
naming conventions Common Conventions
and Arguments
pmie capabilities Introduction to pmie
pmie tool pmie use of PCP services
tool customization PCP Tool Customization
tool development PCP Tool Development
tool summaries Performance Monitoring
and Visualization Collecting, Transporting,
and Archiving Performance Information
Operational and Infrastructure Support
Application and Agent Development

pcp tool Operational and Infrastructure Support
Operational and Infrastructure Support
PCP Tutorials and Case Studies

pminfo command The pminfo Command
pmval command The pmval Command

PCP_COUNTER_WRAP variable PCP
Environment Variables Performance Metric
Wraparound Performance Metrics Wraparound
PCP_STDERR variable PCP Environment
Variables
PCPIntro command PMCD Does Not Start
Performance Monitor Reporting Frequency and
Duration
PDU The pmcd.options File Acronyms
Performance Co-Pilot (see PCP)
Performance Metric Identifier (see PMID)
performance metric wraparound Performance
Metric Wraparound Performance Metrics
Wraparound
performance metrics

concept Performance Metrics
descriptions Descriptions for Performance
Metrics
methods Sources of Performance Metrics and
Their Domains
missing and incomplete values Missing and
Incomplete Values for Performance Metrics
PMNS Performance Metrics Name Space
retrospective sources Retrospective Sources
of Performance Metrics
sources Sources of Performance Metrics and
Their Domains

Performance Metrics Application Programming
Interface (see PMAPI)

Performance Metrics Collection Daemon (see
PMCD)
Performance Metrics Domain (see PMD)
Performance Metrics Domain Agent (see PMDA)
Performance Metrics Inference Engine (see pmie
tool)
Performance Metrics Name Space (see PMNS)
performance monitoring Performance
Monitoring and Visualization Monitoring System
Performance
performance visualization tools Using Archive
Logs with Performance Tools
PM_INDOM_NULL pmie and the Performance
Metrics Collection System
pmafm tool

archive folios Introduction to Archive Logging
brief description Collecting, Transporting, and
Archiving Performance Information
interactive commands PCP Archive Folios

PMAPI
acronym Acronyms
archive logs Archive Logs and the PMAPI
brief description Application and Agent
Development
naming metrics Performance Metrics
pmie capabilities Introduction to pmie

PMCD
acronym Acronyms
brief description Collecting, Transporting, and
Archiving Performance Information
collector host pmie Metric Expressions
configuration files PMCD Options and
Configuration Files
diagnostics and error messages PMCD
Diagnostics and Error Messages
distributed collection Distributed Collection
Distributed Collection
maintenance Performance Metrics Collection
Daemon (PMCD)
monitoring utilities Performance Co-Pilot
Deployment Strategies
not starting PMCD Does Not Start
PMCD_CONNECT_TIMEOUT variable PCP
Environment Variables
PMCD_PORT variable PCP Environment
Variables
PMCD_RECONNECT_TIMEOUT variable
PCP Environment Variables
PMCD_REQUEST_TIMEOUT variable PCP
Environment Variables

Index

112

remote connection Cannot Connect to Remote
PMCD
starting and stopping Starting and Stopping the
PMCD
TCP/IP firewall Running PCP Tools through a
Firewall
${PCP_PMCDCONF_PATH} file Common
Directories and File Locations

pmcd tool (see PMCD)
PMCD_CONNECT_TIMEOUT variable Cannot
Connect to Remote PMCD PCP Environment
Variables
PMCD_PORT variable Running PCP Tools
through a Firewall PMCD Does Not Start PCP
Environment Variables
PMCD_RECONNECT_TIMEOUT variable PCP
Environment Variables
PMCD_REQUEST_TIMEOUT variable PCP
Environment Variables
pmcd_wait tool Collecting, Transporting, and
Archiving Performance Information
pmcd.conf file The pmcd.conf File Controlling
Access to PMCD with pmcd.conf
pmchart tool

brief description Performance Monitoring and
Visualization
fetching metrics Fetching Metrics from Another
Host
man example Monitoring System Performance
record mode PCP Archive Folios
remote PMCD Cannot Connect to Remote
PMCD
short-term executions Directory Organization
for Archive Log Files

pmclient tool Application and Agent Development
Application and Agent Development
pmcollectl tool

brief description Performance Monitoring and
Visualization
record mode PCP Archive Folios

pmconfirm command
error messages PCP Environment Variables
visible alarm Introduction to pmie

PMD PMDA Installation on a PCP Collector Host
Acronyms
PMDA

acronym Acronyms
collectors Collector and Monitor Roles
customizing Customizing the Summary PMDA
development PMDA Development

installation PMDA Installation on a PCP
Collector Host
instance names pmie Metric Expressions
libraries PCP Extensibility
managing optional agents Managing Optional
PMDAs
monitoring utilities Performance Co-Pilot
Deployment Strategies
removal PMDA Removal on a PCP Collector
Host
unification Unification of Performance Metric
Domains

pmdaapache tool Collecting, Transporting, and
Archiving Performance Information
pmdacisco tool Collecting, Transporting, and
Archiving Performance Information
pmdaelasticsearch tool Collecting, Transporting,
and Archiving Performance Information
pmdagfs2 tool Collecting, Transporting, and
Archiving Performance Information
pmdagluster tool Collecting, Transporting, and
Archiving Performance Information
pmdainfiniband tool Collecting, Transporting, and
Archiving Performance Information
pmdakvm tool Collecting, Transporting, and
Archiving Performance Information
pmdalustrecomm tool Collecting, Transporting,
and Archiving Performance Information
pmdamailq tool Collecting, Transporting, and
Archiving Performance Information
pmdamemcache tool Collecting, Transporting,
and Archiving Performance Information
pmdammv tool Collecting, Transporting, and
Archiving Performance Information
pmdamysql tool Collecting, Transporting, and
Archiving Performance Information
pmdanamed tool Collecting, Transporting, and
Archiving Performance Information
pmdanginx tool Collecting, Transporting, and
Archiving Performance Information
pmdapostfix tool Collecting, Transporting, and
Archiving Performance Information
pmdapostgresql tool Collecting, Transporting, and
Archiving Performance Information
pmdaproc tool Collecting, Transporting, and
Archiving Performance Information
pmdarsyslog tool Collecting, Transporting, and
Archiving Performance Information
pmdasamba tool Collecting, Transporting, and
Archiving Performance Information

113

pmdasendmail tool Collecting, Transporting, and
Archiving Performance Information
pmdasnmp tool Collecting, Transporting, and
Archiving Performance Information
pmdasummary tool Collecting, Transporting, and
Archiving Performance Information
pmdasystemd tool Collecting, Transporting, and
Archiving Performance Information
pmdavmware tool Collecting, Transporting, and
Archiving Performance Information
pmdaweblog tool Collecting, Transporting, and
Archiving Performance Information
pmdaxfs tool Collecting, Transporting, and
Archiving Performance Information
pmdbg facility Operational and Infrastructure
Support
pmdumplog tool

archive log contents PCP Archive Contents
brief description Collecting, Transporting, and
Archiving Performance Information
troubleshooting Cannot Find Log

pmdumptext tool
brief description Performance Monitoring and
Visualization
description The pmdumptext Command

pmerr tool Operational and Infrastructure Support
pmgenmap tool Application and Agent
Development
pmhostname tool Operational and Infrastructure
Support
PMID

acronym Acronyms
description Sources of Performance Metrics
and Their Domains Performance Metrics
Name Space
PMNS names Customizing the Summary
PMDA
printing The pminfo Command

pmie tool
%-token pmie Rule Expressions
arithmetic aggregation Arithmetic Aggregation
arithmetic expressions pmie Arithmetic
Expressions
automated reasoning Introduction to pmie
basic examples Basic pmie Usage
brief description Performance Monitoring and
Visualization Operational and Infrastructure
Support
customization Introduction to pmie
developing rules Developing and Debugging
pmie Rules

error detection pmie Error Detection
examples Simple pmie Usage Complex pmie
Examples
fetching metrics Fetching Metrics from Another
Host
global files and directories Global Files and
Directories
instance names pmie Instance Names
intrinsic operators pmie Intrinsic Operators
language Introduction to pmie Specification
Language for pmie
logical expressions pmie Logical Expressions
metric expressions pmie Metric Expressions
performance metrics inference engine
Performance Metrics Inference Engine
pmieconf rules Performance Monitoring and
Visualization Creating pmie Rules with
pmieconf
procedures Creating pmie Rules with
pmieconf Management of pmie Processes
rate conversion pmie Rate Conversion
rate operator The rate Operator
real examples pmie Examples
remote PMCD Cannot Connect to Remote
PMCD
sample intervals pmie Sample Intervals
setting evaluation frequency Setting Evaluation
Frequency
syntax Basic pmie Syntax
transitional operators Transitional Operators

pmevent tool
brief description Performance Monitoring and
Visualization

pmieconf tool
brief description Performance Monitoring and
Visualization
customization Introduction to pmie
rules Creating pmie Rules with pmieconf

pminfo tool
brief description Performance Monitoring and
Visualization
description The pminfo Command
displaying the PMNS Performance Metrics
Name Space
PCP Tutorials and Case Studies The pminfo
Command
pmie arguments pmie and the Performance
Metrics Collection System

pmstat tool
brief description Performance Monitoring and
Visualization

Index

114

description The pmstat Command
pmlc tool

brief description Collecting, Transporting, and
Archiving Performance Information
description Using pmlc
dynamic adjustment Introduction to Archive
Logging
flush command Coordination between
pmlogger and PCP tools
PMLOGGER_PORT variable PCP
Environment Variables
show command Primary pmlogger Cannot
Start
SIGHUP signal Log Volumes
TCP/IP firewall Running PCP Tools through a
Firewall

pmlock tool Operational and Infrastructure
Support
pmlogcheck tool Collecting, Transporting, and
Archiving Performance Information
pmlogconf tool Collecting, Transporting, and
Archiving Performance Information
pmlogextract tool Collecting, Transporting, and
Archiving Performance Information Manipulating
Archive Logs with pmlogextract
pmlogger tool PCP Environment Variables pmie
Rule Expressions

archive logs Fetching Metrics from an Archive
Log Introduction to Archive Logging
brief description Collecting, Transporting, and
Archiving Performance Information
configuration Configuration of pmlogger
Using pmlc
cookbook tasks Cookbook for Archive Logging
current metric context Current Metric Context
folios PCP Archive Folios
PCP tool coordination Coordination between
pmlogger and PCP tools
pmlc control Introduction to Archive Logging
primary instance Primary Logger
remote PMCD Cannot Connect to Remote
PMCD
TCP/IP firewall Running PCP Tools through a
Firewall
troubleshooting Archive Logging
Troubleshooting

pmlogger_check script Operational and
Infrastructure Support Administering PCP Archive
Logs Using cron Scripts

pmlogger_daily script Operational and
Infrastructure Support Administering PCP Archive
Logs Using cron Scripts
pmlogger_merge script Operational and
Infrastructure Support Administering PCP Archive
Logs Using cron Scripts
PMLOGGER_PORT variable Running PCP Tools
through a Firewall PCP Environment Variables
pmlogsummary tool Performance Monitoring and
Visualization Summarizing Archive Logs with
pmlogsummary
pmnewlog tool Operational and Infrastructure
Support
PMNS

acronym Acronyms
brief description Performance Metrics
defined names Uniform Naming and Access to
Performance Metrics
description Performance Metrics Name Space
management PMNS Management
metric expressions pmie Metric Expressions
names Customizing the Summary PMDA
PMNS Alternate Performance Metric Name
Spaces
syntax PMNS Syntax
troubleshooting Performance Metrics Name
Space

PMPROXY_PORT variable PCP Environment
Variables
pmnsadd tool Operational and Infrastructure
Support
pmnsdel tool Operational and Infrastructure
Support
pmprintf tool PCP Environment Variables
pmprobe tool Performance Monitoring and
Visualization
pmrun tool Common Conventions and Arguments
pmsnap tool

brief description Operational and Infrastructure
Support
script usage Administering PCP Archive Logs
Using cron Scripts

pmproxy tool
brief description Performance Monitoring and
Visualization
pmproxy port PCP Environment Variables
TCP/IP firewall Running PCP Tools through a
Firewall

pmstore tool
brief description Operational and Infrastructure
Support

115

description The pmstore Command
setting metric values Monitoring System
Performance

pmtrace tool Collecting, Transporting, and
Archiving Performance Information
pmval tool

brief description Performance Monitoring and
Visualization
description The pmval Command

pmwebd tool Collecting, Transporting, and
Archiving Performance Information
primary archive Primary Logger
primary logger Primary Logger
protocol data units (see PDU)
quantification operators Quantification Operators
rate conversion pmie Rate Conversion
rate operator The rate Operator
relational expressions Relational Expressions
reporting frequency Performance Monitor
Reporting Frequency and Duration
retrospective analysis Retrospective Analysis
Using Archive Logs
roles

collector Collector and Monitor Roles Product
Structure
monitor Collector and Monitor Roles Product
Structure

rule expressions pmie Rule Expressions
sample intervals pmie Sample Intervals
kernel data structures Sources of Performance
Metrics and Their Domains
scripts Operational and Infrastructure Support
Administering PCP Archive Logs Using cron
Scripts
service management Quality of Service
Measurement
set-valued performance metrics Set-Valued
Performance Metrics
show command Primary pmlogger Cannot Start
SIGHUP signal PMCD Not Reconfiguring after
SIGHUP Log Volumes
SIGINT signal Primary pmlogger Cannot Start
SIGUSR1 signal Coordination between
pmlogger and PCP tools
single-valued performance metrics Single-Valued
Performance Metrics
PROXY protocol Running PCP Tools through a
Firewall
software Overview of Component Software
subsystems Product Structure
sum_host operator Arithmetic Aggregation

syntax PMNS Syntax
syslog function Introduction to pmie pmie Rule
Expressions
system log file Introduction to pmie pmie Rule
Expressions
target usage PCP Target Usage
TCP/IP

acronym Acronyms
collector and monitor hosts Running PCP
Tools through a Firewall
remote PMCD Cannot Connect to Remote
PMCD
sockets PCP Environment Variables

text-based tools Monitoring System Performance
time dilation Time Dilation and Time Skew
time duration Time Duration and Control
time window options Time Window Options
time-stamped message pmie Rule Expressions
timezone options Timezone Options
tool customization PCP Tool Customization
tool development PCP Tool Development
tool options General PCP Tool Options
Performance Metrics Inference Engine
transient problems Transient Problems with
Performance Metric Values
transitional operators Transitional Operators
troubleshooting

archive logging Archive Logging
Troubleshooting
general utilities Cannot Connect to Remote
PMCD
kernel metrics Kernel Metrics and the PMCD
PMCD Troubleshooting Kernel Metrics and the
PMCD

uniform naming Uniform Naming and Access to
Performance Metrics
units Units
user interface components Common Conventions
and Arguments
${PCP_BINADM_DIR}/pmcd file Common
Directories and File Locations
${PCP_LOG_DIR}/NOTICES file Introduction to
pmie
${PCP_LOGDIR}/pmcd/pmcd.log file PMCD
Does Not Start
${PCP_PMCDOPTIONS_PATH} file Common
Directories and File Locations
${PCP_PMCDCONF_PATH} filePMDA
Installation on a PCP Collector Host PMCD Not
Reconfiguring after SIGHUP Common Directories
and File Locations

Index

116

${PCP_SYSCONF_DIR}/pmlogger/config.default
file Primary Logger
${PCP_PMLOGGERCONTROL_PATH} file
Administering PCP Archive Logs Using cron
Scripts Directory Organization for Archive Log
Files
${PCP_DEMOS_DIR} pmie Examples
${PCP_VAR_DIR}/pmns/stdpmid file PMDA
Installation on a PCP Collector Host
${PCP_TMP_DIR}/pmlogger files Primary
pmlogger Cannot Start
window options Time Window Options

	Performance Co-Pilot™ User's and Administrator's Guide
	Table of Contents
	About This Guide
	1. What This Guide Contains
	2. Audience for This Guide
	3. Related Resources
	4. Man Pages
	5. Web Site
	6. Conventions
	7. Reader Comments

	Chapter 1. Introduction to PCP
	1.1. Objectives
	1.1.1. PCP Target Usage
	1.1.2. Empowering the PCP User
	1.1.3. Unification of Performance Metric Domains
	1.1.4. Uniform Naming and Access to Performance Metrics
	1.1.5. PCP Distributed Operation
	1.1.6. Dynamic Adaptation to Change
	1.1.7. Logging and Retrospective Analysis
	1.1.8. Automated Operational Support
	1.1.9. PCP Extensibility
	1.1.10. Metric Coverage

	1.2. Conceptual Foundations
	1.2.1. Performance Metrics
	1.2.2. Performance Metric Instances
	1.2.3. Current Metric Context
	1.2.4. Sources of Performance Metrics and Their Domains
	1.2.5. Distributed Collection
	1.2.6. Performance Metrics Name Space
	1.2.6.1. Performance Metrics Name Space Diagram

	1.2.7. Descriptions for Performance Metrics
	1.2.8. Values for Performance Metrics
	1.2.8.1. Single-Valued Performance Metrics
	1.2.8.2. Set-Valued Performance Metrics

	1.2.9. Collector and Monitor Roles
	1.2.10. Retrospective Sources of Performance Metrics
	1.2.11. Product Extensibility

	1.3. Overview of Component Software
	1.3.1. Performance Monitoring and Visualization
	1.3.2. Collecting, Transporting, and Archiving Performance Information
	1.3.3. Operational and Infrastructure Support
	1.3.4. Application and Agent Development

	Chapter 2. Installing and Configuring Performance Co-Pilot
	2.1. Product Structure
	2.2. Performance Metrics Collection Daemon (PMCD)
	2.2.1. Starting and Stopping the PMCD
	2.2.2. Restarting an Unresponsive PMCD
	2.2.3. PMCD Diagnostics and Error Messages
	2.2.4. PMCD Options and Configuration Files
	2.2.4.1. The pmcd.options File
	2.2.4.2. The pmcd.conf File
	2.2.4.3. Controlling Access to PMCD with pmcd.conf

	2.3. Managing Optional PMDAs
	2.3.1. PMDA Installation on a PCP Collector Host
	2.3.2. PMDA Removal on a PCP Collector Host

	2.4. Troubleshooting
	2.4.1. Performance Metrics Name Space
	2.4.2. Missing and Incomplete Values for Performance Metrics
	2.4.2.1. Metric Values Not Available

	2.4.3. Kernel Metrics and the PMCD
	2.4.3.1. Cannot Connect to Remote PMCD
	2.4.3.2. PMCD Not Reconfiguring after SIGHUP
	2.4.3.3. PMCD Does Not Start

	Chapter 3. Common Conventions and Arguments
	3.1. Alternate Metrics Source Options
	3.1.1. Fetching Metrics from Another Host
	3.1.2. Fetching Metrics from an Archive Log

	3.2. General PCP Tool Options
	3.2.1. Common Directories and File Locations
	3.2.2. Alternate Performance Metric Name Spaces

	3.3. Time Duration and Control
	3.3.1. Performance Monitor Reporting Frequency and Duration
	3.3.2. Time Window Options
	3.3.3. Timezone Options

	3.4. PCP Environment Variables
	3.5. Running PCP Tools through a Firewall
	3.5.1. The pmproxy service

	3.6. Transient Problems with Performance Metric Values
	3.6.1. Performance Metric Wraparound
	3.6.2. Time Dilation and Time Skew

	Chapter 4. Monitoring System Performance
	4.1. The pmstat Command
	4.2. The pmdumptext Command
	4.3. The pmval Command
	4.4. The pminfo Command
	4.5. The pmstore Command

	Chapter 5. Performance Metrics Inference Engine
	5.1. Introduction to pmie
	5.2. Basic pmie Usage
	5.2.1. pmie use of PCP services
	5.2.2. Simple pmie Usage
	5.2.3. Complex pmie Examples

	5.3. Specification Language for pmie
	5.3.1. Basic pmie Syntax
	5.3.1.1. Lexical Elements
	5.3.1.2. Comments
	5.3.1.3. Macros
	5.3.1.4. Units

	5.3.2. Setting Evaluation Frequency
	5.3.3. pmie Metric Expressions
	5.3.4. pmie Rate Conversion
	5.3.5. pmie Arithmetic Expressions
	5.3.6. pmie Logical Expressions
	5.3.6.1. Logical Constants
	5.3.6.2. Relational Expressions
	5.3.6.3. Boolean Expressions
	5.3.6.4. Quantification Operators

	5.3.7. pmie Rule Expressions
	5.3.8. pmie Intrinsic Operators
	5.3.8.1. Arithmetic Aggregation
	5.3.8.2. The rate Operator
	5.3.8.3. Transitional Operators

	5.4. pmie Examples
	5.5. Developing and Debugging pmie Rules
	5.6. Caveats and Notes on pmie
	5.6.1. Performance Metrics Wraparound
	5.6.2. pmie Sample Intervals
	5.6.3. pmie Instance Names
	5.6.4. pmie Error Detection

	5.7. Creating pmie Rules with pmieconf
	5.8. Management of pmie Processes
	5.8.1. Add a pmie crontab Entry
	5.8.2. Global Files and Directories
	5.8.3. pmie Instances and Their Progress

	Chapter 6. Archive Logging
	6.1. Introduction to Archive Logging
	6.1.1. Archive Logs and the PMAPI
	6.1.2. Retrospective Analysis Using Archive Logs
	6.1.3. Using Archive Logs for Capacity Planning

	6.2. Using Archive Logs with Performance Tools
	6.2.1. Coordination between pmlogger and PCP tools
	6.2.2. Administering PCP Archive Logs Using cron Scripts
	6.2.3. Archive Log File Management
	6.2.3.1. Basename Conventions
	6.2.3.2. Log Volumes
	6.2.3.3. Basenames for Managed Archive Log Files
	6.2.3.4. Directory Organization for Archive Log Files
	6.2.3.5. Configuration of pmlogger
	6.2.3.6. PCP Archive Contents

	6.3. Cookbook for Archive Logging
	6.3.1. Primary Logger
	6.3.2. Other Logger Configurations
	6.3.3. Archive Log Administration

	6.4. Other Archive Logging Features and Services
	6.4.1. PCP Archive Folios
	6.4.2. Manipulating Archive Logs with pmlogextract
	6.4.3. Summarizing Archive Logs with pmlogsummary
	6.4.4. Primary Logger
	6.4.5. Using pmlc

	6.5. Archive Logging Troubleshooting
	6.5.1. pmlogger Cannot Write Log
	6.5.2. Cannot Find Log
	6.5.3. Primary pmlogger Cannot Start
	6.5.4. Identifying an Active pmlogger Process
	6.5.5. Illegal Label Record
	6.5.6. Empty Archive Log Files or pmlogger Exits Immediately

	Chapter 7. Performance Co-Pilot Deployment Strategies
	7.1. Basic Deployment
	7.2. PCP Collector Deployment
	7.2.1. Principal Server Deployment
	7.2.2. Quality of Service Measurement

	7.3. PCP Archive Logger Deployment
	7.3.1. Deployment Options
	7.3.2. Resource Demands for the Deployment Options
	7.3.3. Operational Management
	7.3.4. Exporting PCP Archive Logs

	7.4. PCP Inference Engine Deployment
	7.4.1. Deployment Options
	7.4.2. Resource Demands for the Deployment Options
	7.4.3. Operational Management

	Chapter 8. Customizing and Extending PCP Services
	8.1. PMDA Customization
	8.1.1. Customizing the Summary PMDA

	8.2. PCP Tool Customization
	8.2.1. Archive Logging Customization
	8.2.2. Inference Engine Customization

	8.3. PMNS Management
	8.3.1. PMNS Processing Framework
	8.3.2. PMNS Syntax

	8.4. PMDA Development
	8.5. PCP Tool Development

	Appendix A. Acronyms
	Index

