

pdftools.pdfposter-0.6.0/setup.py

"""
``Pdfposter`` can be used to create a large poster by building it from
multple pages and/or printing it on large media. It expects as input a
PDF file, normally printing on a single page. The output is again a
PDF file, maybe containing multiple pages together building the
poster.
The input page will be scaled to obtain the desired size.

This is much like ``poster`` does for Postscript files, but working
with PDF. Since sometimes poster does not like your files converted
from PDF. :-) Indeed ``pdfposter`` was inspired by ``poster``.

For more information please refere to the manpage or visit
the `project homepage <http://pythonhosted.org/pdftools.pdfposter/>`_.
"""

import ez_setup
ez_setup.use_setuptools()

from setuptools import setup, find_packages
additional_keywords ={}

try:
 import py2exe
except ImportError:
 py2exe = None

from distutils.core import Command
from distutils import log
import os

class build_docs(Command):
 description = "build documentation from rst-files"
 user_options=[]

 def initialize_options (self): pass
 def finalize_options (self):
 self.docpages = DOCPAGES

 def run(self):
 substitutions = ('.. |VERSION| replace:: '
 + self.distribution.get_version())
 for writer, rstfilename, outfilename in self.docpages:
 distutils.dir_util.mkpath(os.path.dirname(outfilename))
 log.info("creating %s page %s", writer, outfilename)
 if not self.dry_run:
 try:
 rsttext = open(rstfilename).read()
 except IOError, e:
 sys.exit(e)
 rsttext = '\n'.join((substitutions, rsttext))
 # docutils.core does not offer easy reading from a
 # string into a file, so we need to do it ourself :-(
 doc = docutils.core.publish_string(source=rsttext,
 source_path=rstfilename,
 writer_name=writer)
 try:
 rsttext = open(outfilename, 'w').write(doc)
 except IOError, e:
 sys.exit(e)

cmdclass = {}

try:
 import docutils.core
 import docutils.io
 import docutils.writers.manpage
 import distutils.command.build
 distutils.command.build.build.sub_commands.append(('build_docs', None))
 cmdclass['build_docs'] = build_docs
except ImportError:
 log.warn("docutils not installed, can not build man pages. "
 "Using pre-build ones.")

DOCPAGES = (
 ('manpage', 'pdfposter.rst', 'docs/pdfposter.1'),
 ('html', 'pdfposter.rst', 'docs/pdfposter.html'),
)

if py2exe:
 resources = {
 #'other_resources': [(u"VERSIONTAG",1,myrevisionstring)],
 'icon_resources' : [(1,'projectlogo.ico')]
 }
 additional_keywords.update({
 'windows': [],
 'console': [dict(script='pdfposter', **resources)],
 'zipfile': None,
 })

setup(
 cmdclass=cmdclass,
 name = "pdftools.pdfposter",
 version = "0.6.0",
 #scripts = ['pdfposter'],
 install_requires = ['pyPdf>1.10'],

 packages=find_packages(exclude=['ez_setup']),
 namespace_packages=['pdftools'],

 package_data = {
 # If any package contains *.txt or *.rst files, include them:
 '': ['*.txt', '*.rst'],
 # And include any *.msg files found in the 'hello' package, too:
 'hello': ['*.msg'],
 },

 # metadata for upload to PyPI
 author = "Hartmut Goebel",
 author_email = "h.goebel@crazy-compilers.com",
 description = "Scale and tile PDF images/pages to print on multiple pages.",
 long_description = __doc__,
 license = "GPL 3.0",
 keywords = "pdf poster",
 url = "http://pythonhosted.org/pdftools.pdfposter/",
 download_url = "http://pypi.python.org/pypi/pdftools.pdfposter/",
 classifiers = [
 'Development Status :: 5 - Production/Stable',
 'Environment :: Console',
 'Intended Audience :: Developers',
 'Intended Audience :: End Users/Desktop',
 'Intended Audience :: System Administrators',
 'License :: OSI Approved :: GNU General Public License (GPL)',
 'Natural Language :: English',
 'Operating System :: OS Independent',
 'Programming Language :: Python',
 'Topic :: Printing',
 'Topic :: Utilities',
],

 # these are for easy_install (used by bdist_*)
 zip_safe = True,
 entry_points = {
 "console_scripts": [
 "pdfposter = pdftools.pdfposter.cmd:run",
],
 },
 # these are for py2exe
 options = {
 # bundle_files 1: bundle everything, including the Python interpreter
 # bundle_files 2: bundle everything but the Python interpreter
 # bundle_files 3: don't bundle
 "py2exe":{"optimize": 2,
 "bundle_files": 1,
 "includes": [],
 }
 },
 **additional_keywords
)

pdftools.pdfposter-0.6.0/setup.cfg

[sdist]
formats = bztar,zip

[bdist]
formats = egg

[aliases]
home = develop --install-dir ~/lib/python/ --script-dir ~/bin
devel = develop --multi-version --install-dir bin
daily = egg_info --tag-svn-revision --tag-build=dev bdist sdist
release = egg_info sdist register upload upload_docs

[upload_docs]
upload-dir = docs/_build/html

[egg_info]
tag_build =
tag_date = 0
tag_svn_revision = 0

pdftools.pdfposter-0.6.0/pdfposter.rst

.. -*- mode: rst ; ispell-local-dictionary: "american" -*-

==========================
pdfposter
==========================

Scale and tile PDF images/pages to print on multiple pages.

:Author: Hartmut Goebel <h.goebel@crazy-compilers.com>
:Version: Version |VERSION|
:Copyright: 2008-2013 by Hartmut Goebel
:Licence: GNU Public Licence v3 (GPLv3)
:Manual section: 1

.. raw:: manpage

 .\" disable justification (adjust text to left margin only)
 .ad l

SYNOPSIS
==========

``pdfposter`` <options> infile outfile

DESCRIPTION
============

``Pdfposter`` can be used to create a large poster by building it from
multple pages and/or printing it on large media. It expects as input a
PDF file, normally printing on a single page. The output is again a
PDF file, maybe containing multiple pages together building the
poster.
The input page will be scaled to obtain the desired size.

.. comment
 The output pages bear cutmarks and have slightly overlapping
 images for easier assembling.

The program uses a simple but efficient method which is possible with
PDF: All new pages share the same data stream of the scaled page. Thus
resulting file grows moderatly.

To control its operation, you need to specify either the size of the
desired poster or a scale factor for the image:

- Given the poster size, it calculates the required number of sheets
 to print on, and from that a scale factor to fill these sheets
 optimally with the input image.

- Given a scale factor, it derives the required number of pages from
 the input image size, and positions the scaled image centered on
 this area.

OPTIONS
========

General Options

--version Show program's version number and exit
-h, --help Show help message and exit
--help-media-names List available media and distance names and exit
-v, --verbose Be verbose. Tell about scaling, rotation and number of
 pages. Can be used more than once to increase the
 verbosity.
-n, --dry-run Show what would have been done, but do not generate files.

-A, --art-box Use the content area defined by the ArtBox (default:
 use the area defined by the TrimBox)

Defining Output

-m BOX, --media-size=BOX Specify the desired media size to print on.
 See below for *BOX*. The default is A4 in the standard
 package.

-p BOX, --poster-size=BOX Specify the poster size. See below for *BOX*.
 pdfposter will autonomously choose scaling and rotation to
 best fit the input onto the poster (see EXAMPLES below).

	 If you give neither the *-s* nor the *-p* option, the default
 poster size is identical to the media size.

-s NUMBER Specify a linear scaling factor to produce the poster.
 Together with the input image size and optional margins,
 this induces an output poster size. So don't specify both *-s*
 and *-p*.

	 Default is deriving the scale factor to fit a given poster
 size.

Box Definition

The *BOX* mentioned above is a specification of horizontal and
vertical size. The syntax is as follows (with multipier being
specified optionally):

 box = [*multiplier*] *unit*

 multiplier = *number* "x" *number*

 unit = *medianame* or *distancename*

..
 Only in combination with the *-i* option, the program
 also understands the offset specification in the *BOX*.
 <offset> = +<number>,<number>
 [<offset>]
 and offset

Many international media names are recognised by the program, in upper
and lower case, and can be shortened to their first few characters, as
long as unique. For instance 'A0', 'Let'. Distance names are like
'cm', 'inch', 'ft'.

Medias are typically not quadratic but rectangular, which means width
and hight differ. Thus using medianames is a bit tricky:

:10x20cm: obviuos: 10 cm x 20 cm (portrait)
:20x10cm: same as 10x20cm, since all boxes are rotated to portrait
 format

Now when using medianames it gets tricky:

:1x1a4: same as approx. 21x29cm (21 cm x 29 cm, portrait)
:1x2a4: same as approx. 21x58cm (21 cm x 58 cm, portrait)

 This are two a4 pages put together at the *small* side: One
 portrait page wide and two portrait pages high.

:2x1a4: same as approx. 42x29cm, which is rotated to portrait and is
 the same a 29x42cm (29 cm x 42 cm)

 This are two a4 pages put together at the *long* side: Two
 portrait pages wide and one portrait page high.

EXAMPLES
============

:pdfposter -mA3 -pA0 a4.pdf out.pdf:
 Prints an A4 input file on 8 A3 pages, forming an A0 poster.

:pdfposter -p3x3Let a4.pdf out.pdf:
 Prints an inputfile on a poster of 3x3 Letter pages.

..
 not yet implemented: margins
 :pdfposter -mA0 -w2x2i input.pdf out.pdf:
 Enlarges an inputfile to print on a large-media A0 capable
 device, maintaining 2 inch margins:

:pdfposter -mA0 input.pdf out.pdf:
 Enlarges an inputfile to print on a large-media A0 capable
 device.

:pdfposter -s4 input.pdf out.pdf:
 Enlarge an inputfile exactly 4 times, print on the default A4
 media, and let ``pdfposter`` determine the number of pages
 required.

..
 not yet implemented
 :pdfposter -mLegal -p1x1m -w10% -C5 input.pdf out.pdf:
 Scale a postscript image to a poster of about 1 square meter,
 printing on 'Legal' media, maintaining a 10% of 'Legal' size
 as white margin around the poster. Print cutmark lines and grid
 labels, but don't print cut mark arrow heads.

:pdfposter -m10x10cm -pa0 a4.pdf out.pdf:
 Just to show how efficient ``pdfposter`` is: This will create a file
 containing 192 pages, but only 15 times as big as the single page.
 With a4.pdf being a quite empty page, this ratio should be even
 better for filled pages.

More examples including sample pictures can be found at
http://pythonhosted.org/pdftools.pdfposter/examples

Examples for automatic scaling

* For printing 2 *portrait* A4 pages high (approx. 58cm) and let
 pdfposter determine how many portrait pages wide, specify a lage
 number of *vertical* pages. eg:

 :pdfposter -p999x2a4 testpage-wide.pdf out.pdf:

* For printing 2 *landscape* A4 pages high (approx. 20cm) and let
 pdfposter determine how many landscape pages wide, specify a lage
 number of *horizontal* pages. eg:

 :pdfposter -p2x999a4 testpage-wide.pdf out.pdf:

SEE ALSO
=============

``poster``\(1),
``pdfnup``\(1) http://pypi.python.org/pypi/pdfnup/,
``pdfsplit``\(1) http://pypi.python.org/pypi/pdfsplit/,
``pdfgrid``\(1) http://pypi.python.org/pypi/pdfgrid/

Project Homepage http://pythonhosted.org/pdftools.pdfposter/

pdftools.pdfposter-0.6.0/docs/images/testpage-wide.preview.png

pdftools.pdfposter-0.6.0/docs/images/poster-wide-1x2a4.png

pdftools.pdfposter-0.6.0/docs/images/testpage-tall.preview.png

pdftools.pdfposter-0.6.0/docs/images/poster-tall-1x2a4.png

pdftools.pdfposter-0.6.0/docs/images/poster-tall-2x1a4.png

pdftools.pdfposter-0.6.0/docs/images/poster-wide-2x1a4.png

pdftools.pdfposter-0.6.0/docs/conf.py

-*- coding: utf-8 -*-
#
pdftools.PDFposter documentation build configuration file, created by
sphinx-quickstart on Tue May 21 16:21:39 2013.
#
This file is execfile()d with the current directory set to its containing dir.
#
Note that not all possible configuration values are present in this
autogenerated file.
#
All configuration values have a default; values that are commented out
serve to show the default.

import sys, os

If extensions (or modules to document with autodoc) are in another directory,
add these directories to sys.path here. If the directory is relative to the
documentation root, use os.path.abspath to make it absolute, like shown here.
#sys.path.insert(0, os.path.abspath('.'))

-- General configuration ---

If your documentation needs a minimal Sphinx version, state it here.
#needs_sphinx = '1.0'

Add any Sphinx extension module names here, as strings. They can be extensions
coming with Sphinx (named 'sphinx.ext.*') or your custom ones.
extensions = []

Add any paths that contain templates here, relative to this directory.
templates_path = ['_templates']

The suffix of source filenames.
source_suffix = '.rst'

The encoding of source files.
#source_encoding = 'utf-8-sig'

The master toctree document.
master_doc = 'index'

General information about the project.
project = u'pdftools.PDFposter'
copyright = u'2008-2013, Hartmut Goebel'

The version info for the project you're documenting, acts as replacement for
|version| and |release|, also used in various other places throughout the
built documents.
#
The short X.Y version.
version = '0.6'
The full version, including alpha/beta/rc tags.
release = '0.6.0'

The language for content autogenerated by Sphinx. Refer to documentation
for a list of supported languages.
#language = None

There are two options for replacing |today|: either, you set today to some
non-false value, then it is used:
#today = ''
Else, today_fmt is used as the format for a strftime call.
#today_fmt = '%B %d, %Y'

List of patterns, relative to source directory, that match files and
directories to ignore when looking for source files.
exclude_patterns = ['_build']

The reST default role (used for this markup: `text`) to use for all documents.
#default_role = None

If true, '()' will be appended to :func: etc. cross-reference text.
#add_function_parentheses = True

If true, the current module name will be prepended to all description
unit titles (such as .. function::).
#add_module_names = True

If true, sectionauthor and moduleauthor directives will be shown in the
output. They are ignored by default.
#show_authors = False

The name of the Pygments (syntax highlighting) style to use.
pygments_style = 'sphinx'

A list of ignored prefixes for module index sorting.
#modindex_common_prefix = []

-- Options for HTML output ---

The theme to use for HTML and HTML Help pages. See the documentation for
a list of builtin themes.
html_theme = 'default'

Theme options are theme-specific and customize the look and feel of a theme
further. For a list of options available for each theme, see the
documentation.
#html_theme_options = {}

Add any paths that contain custom themes here, relative to this directory.
#html_theme_path = []

The name for this set of Sphinx documents. If None, it defaults to
"<project> v<release> documentation".
#html_title = None

A shorter title for the navigation bar. Default is the same as html_title.
#html_short_title = None

The name of an image file (relative to this directory) to place at the top
of the sidebar.
#html_logo = None

The name of an image file (within the static path) to use as favicon of the
docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32
pixels large.
#html_favicon = None

Add any paths that contain custom static files (such as style sheets) here,
relative to this directory. They are copied after the builtin static files,
so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = ['_static']

If not '', a 'Last updated on:' timestamp is inserted at every page bottom,
using the given strftime format.
#html_last_updated_fmt = '%b %d, %Y'

If true, SmartyPants will be used to convert quotes and dashes to
typographically correct entities.
#html_use_smartypants = True

Custom sidebar templates, maps document names to template names.
#html_sidebars = {}

Additional templates that should be rendered to pages, maps page names to
template names.
#html_additional_pages = {}

If false, no module index is generated.
#html_domain_indices = True

If false, no index is generated.
#html_use_index = True

If true, the index is split into individual pages for each letter.
#html_split_index = False

If true, links to the reST sources are added to the pages.
#html_show_sourcelink = True

If true, "Created using Sphinx" is shown in the HTML footer. Default is True.
#html_show_sphinx = True

If true, "(C) Copyright ..." is shown in the HTML footer. Default is True.
#html_show_copyright = True

If true, an OpenSearch description file will be output, and all pages will
contain a <link> tag referring to it. The value of this option must be the
base URL from which the finished HTML is served.
#html_use_opensearch = ''

This is the file name suffix for HTML files (e.g. ".xhtml").
#html_file_suffix = None

Output file base name for HTML help builder.
htmlhelp_basename = 'pdftoolsPDFposterdoc'

-- Options for LaTeX output --

latex_elements = {
The paper size ('letterpaper' or 'a4paper').
#'papersize': 'letterpaper',

The font size ('10pt', '11pt' or '12pt').
#'pointsize': '10pt',

Additional stuff for the LaTeX preamble.
#'preamble': '',
}

Grouping the document tree into LaTeX files. List of tuples
(source start file, target name, title, author, documentclass [howto/manual]).
latex_documents = [
 ('index', 'pdftoolsPDFposter.tex', u'pdftools.PDFposter Documentation',
 u'Hartmut Goebel', 'manual'),
]

The name of an image file (relative to this directory) to place at the top of
the title page.
#latex_logo = None

For "manual" documents, if this is true, then toplevel headings are parts,
not chapters.
#latex_use_parts = False

If true, show page references after internal links.
#latex_show_pagerefs = False

If true, show URL addresses after external links.
#latex_show_urls = False

Documents to append as an appendix to all manuals.
#latex_appendices = []

If false, no module index is generated.
#latex_domain_indices = True

-- Options for manual page output --

One entry per manual page. List of tuples
(source start file, name, description, authors, manual section).
man_pages = [
 ('index', 'pdftoolspdfposter', u'pdftools.PDFposter Documentation',
 [u'Hartmut Goebel'], 1)
]

If true, show URL addresses after external links.
#man_show_urls = False

-- Options for Texinfo output --

Grouping the document tree into Texinfo files. List of tuples
(source start file, target name, title, author,
dir menu entry, description, category)
texinfo_documents = [
 ('index', 'pdftoolsPDFposter', u'pdftools.PDFposter Documentation',
 u'Hartmut Goebel', 'pdftoolsPDFposter', 'One line description of project.',
 'Miscellaneous'),
]

Documents to append as an appendix to all manuals.
#texinfo_appendices = []

If false, no module index is generated.
#texinfo_domain_indices = True

How to display URL addresses: 'footnote', 'no', or 'inline'.
#texinfo_show_urls = 'footnote'

pdftools.pdfposter-0.6.0/docs/pdfposter.1

.\" Man page generated from reStructeredText.
.
.TH PDFPOSTER 1 "" "Version 0.6.0" ""
.SH NAME
pdfposter \- Scale and tile PDF images/pages to print on multiple pages.
.
.nr rst2man-indent-level 0
.
.de1 rstReportMargin
\\$1 \\n[an-margin]
level \\n[rst2man-indent-level]
level margin: \\n[rst2man-indent\\n[rst2man-indent-level]]
-
\\n[rst2man-indent0]
\\n[rst2man-indent1]
\\n[rst2man-indent2]
..
.de1 INDENT
.\" .rstReportMargin pre:
. RS \\$1
. nr rst2man-indent\\n[rst2man-indent-level] \\n[an-margin]
. nr rst2man-indent-level +1
.\" .rstReportMargin post:
..
.de UNINDENT
. RE
.\" indent \\n[an-margin]
.\" old: \\n[rst2man-indent\\n[rst2man-indent-level]]
.nr rst2man-indent-level -1
.\" new: \\n[rst2man-indent\\n[rst2man-indent-level]]
.in \\n[rst2man-indent\\n[rst2man-indent-level]]u
..
.\" -*- mode: rst ; ispell-local-dictionary: "american" -*-
.
.\" disable justification (adjust text to left margin only)
.ad l
.SH SYNOPSIS
.sp
\fBpdfposter\fP <options> infile outfile
.SH DESCRIPTION
.sp
\fBPdfposter\fP can be used to create a large poster by building it from
multple pages and/or printing it on large media. It expects as input a
PDF file, normally printing on a single page. The output is again a
PDF file, maybe containing multiple pages together building the
poster.
The input page will be scaled to obtain the desired size.
.\" comment
.\" The output pages bear cutmarks and have slightly overlapping
.\" images for easier assembling.
.
.sp
The program uses a simple but efficient method which is possible with
PDF: All new pages share the same data stream of the scaled page. Thus
resulting file grows moderatly.
.sp
To control its operation, you need to specify either the size of the
desired poster or a scale factor for the image:
.INDENT 0.0
.IP \(bu 2
.
Given the poster size, it calculates the required number of sheets
to print on, and from that a scale factor to fill these sheets
optimally with the input image.
.IP \(bu 2
.
Given a scale factor, it derives the required number of pages from
the input image size, and positions the scaled image centered on
this area.
.UNINDENT
.SH OPTIONS
.SS General Options
.INDENT 0.0
.TP
.B \-\-version
.
Show program\(aqs version number and exit
.TP
.B \-h, \-\-help
.
Show help message and exit
.TP
.B \-\-help\-media\-names
.
List available media and distance names and exit
.TP
.B \-v, \-\-verbose
.
Be verbose. Tell about scaling, rotation and number of
pages. Can be used more than once to increase the
verbosity.
.TP
.B \-n, \-\-dry\-run
.
Show what would have been done, but do not generate files.
.TP
.B \-A, \-\-art\-box
.
Use the content area defined by the ArtBox (default:
use the area defined by the TrimBox)
.UNINDENT
.SS Defining Output
.INDENT 0.0
.TP
.BI \-m \ BOX, \ \-\-media\-size\fB= BOX
.
Specify the desired media size to print on.
See below for \fIBOX\fP. The default is A4 in the standard
package.
.TP
.BI \-p \ BOX, \ \-\-poster\-size\fB= BOX
.
Specify the poster size. See below for \fIBOX\fP.
pdfposter will autonomously choose scaling and rotation to
best fit the input onto the poster (see EXAMPLES below).
.sp
If you give neither the \fI\-s\fP nor the \fI\-p\fP option, the default
poster size is identical to the media size.
.TP
.BI \-s \ NUMBER
.
Specify a linear scaling factor to produce the poster.
Together with the input image size and optional margins,
this induces an output poster size. So don\(aqt specify both \fI\-s\fP
and \fI\-p\fP.
.sp
Default is deriving the scale factor to fit a given poster
size.
.UNINDENT
.SS Box Definition
.sp
The \fIBOX\fP mentioned above is a specification of horizontal and
vertical size. The syntax is as follows (with multipier being
specified optionally):
.INDENT 0.0
.INDENT 3.5
.sp
\fIbox\fP = [\fImultiplier\fP] \fIunit\fP
.sp
\fImultiplier\fP = \fInumber\fP "x" \fInumber\fP
.sp
\fIunit\fP = \fImedianame\fP or \fIdistancename\fP
.UNINDENT
.UNINDENT
.\" Only in combination with the *-i* option, the program
.\" also understands the offset specification in the *BOX*.
.\" <offset> = +<number>,<number>
.\" [<offset>]
.\" and offset
.
.sp
Many international media names are recognised by the program, in upper
and lower case, and can be shortened to their first few characters, as
long as unique. For instance \(aqA0\(aq, \(aqLet\(aq. Distance names are like
\(aqcm\(aq, \(aqinch\(aq, \(aqft\(aq.
.sp
Medias are typically not quadratic but rectangular, which means width
and hight differ. Thus using medianames is a bit tricky:
.INDENT 0.0
.TP
.B 10x20cm
.
obviuos: 10 cm x 20 cm (portrait)
.TP
.B 20x10cm
.
same as 10x20cm, since all boxes are rotated to portrait
format
.UNINDENT
.sp
Now when using medianames it gets tricky:
.INDENT 0.0
.TP
.B 1x1a4
.
same as approx. 21x29cm (21 cm x 29 cm, portrait)
.TP
.B 1x2a4
.
same as approx. 21x58cm (21 cm x 58 cm, portrait)
.sp
This are two a4 pages put together at the \fIsmall\fP side: One
portrait page wide and two portrait pages high.
.TP
.B 2x1a4
.
same as approx. 42x29cm, which is rotated to portrait and is
the same a 29x42cm (29 cm x 42 cm)
.sp
This are two a4 pages put together at the \fIlong\fP side: Two
portrait pages wide and one portrait page high.
.UNINDENT
.SH EXAMPLES
.INDENT 0.0
.TP
.B pdfposter \-mA3 \-pA0 a4.pdf out.pdf
.
Prints an A4 input file on 8 A3 pages, forming an A0 poster.
.TP
.B pdfposter \-p3x3Let a4.pdf out.pdf
.
Prints an inputfile on a poster of 3x3 Letter pages.
.UNINDENT
.\" not yet implemented: margins
.\" :pdfposter -mA0 -w2x2i input.pdf out.pdf:
.\" Enlarges an inputfile to print on a large-media A0 capable
.\" device, maintaining 2 inch margins:
.
.INDENT 0.0
.TP
.B pdfposter \-mA0 input.pdf out.pdf
.
Enlarges an inputfile to print on a large\-media A0 capable
device.
.TP
.B pdfposter \-s4 input.pdf out.pdf
.
Enlarge an inputfile exactly 4 times, print on the default A4
media, and let \fBpdfposter\fP determine the number of pages
required.
.UNINDENT
.\" not yet implemented
.\" :pdfposter -mLegal -p1x1m -w10% -C5 input.pdf out.pdf:
.\" Scale a postscript image to a poster of about 1 square meter,
.\" printing on 'Legal' media, maintaining a 10% of 'Legal' size
.\" as white margin around the poster. Print cutmark lines and grid
.\" labels, but don't print cut mark arrow heads.
.
.INDENT 0.0
.TP
.B pdfposter \-m10x10cm \-pa0 a4.pdf out.pdf
.
Just to show how efficient \fBpdfposter\fP is: This will create a file
containing 192 pages, but only 15 times as big as the single page.
With a4.pdf being a quite empty page, this ratio should be even
better for filled pages.
.UNINDENT
.sp
More examples including sample pictures can be found at
\fI\%http://pythonhosted.org/pdftools.pdfposter/examples\fP
.SS Examples for automatic scaling
.INDENT 0.0
.IP \(bu 2
.
For printing 2 \fIportrait\fP A4 pages high (approx. 58cm) and let
pdfposter determine how many portrait pages wide, specify a lage
number of \fIvertical\fP pages. eg:
.INDENT 2.0
.INDENT 3.5
.INDENT 0.0
.TP
.B pdfposter \-p999x2a4 testpage\-wide.pdf out.pdf
.UNINDENT
.UNINDENT
.UNINDENT
.IP \(bu 2
.
For printing 2 \fIlandscape\fP A4 pages high (approx. 20cm) and let
pdfposter determine how many landscape pages wide, specify a lage
number of \fIhorizontal\fP pages. eg:
.INDENT 2.0
.INDENT 3.5
.INDENT 0.0
.TP
.B pdfposter \-p2x999a4 testpage\-wide.pdf out.pdf
.UNINDENT
.UNINDENT
.UNINDENT
.UNINDENT
.SH SEE ALSO
.sp
\fBposter\fP(1),
\fBpdfnup\fP(1) \fI\%http://pypi.python.org/pypi/pdfnup/\fP,
\fBpdfsplit\fP(1) \fI\%http://pypi.python.org/pypi/pdfsplit/\fP,
\fBpdfgrid\fP(1) \fI\%http://pypi.python.org/pypi/pdfgrid/\fP
.sp
Project Homepage \fI\%http://pythonhosted.org/pdftools.pdfposter/\fP
.SH AUTHOR
Hartmut Goebel <h.goebel@crazy-compilers.com>

Licence: GNU Public Licence v3 (GPLv3)
.SH COPYRIGHT
2008-2013 by Hartmut Goebel
.\" Generated by docutils manpage writer.
.\"
.

pdftools.pdfposter-0.6.0/docs/Frequently Asked Questions.rst

.. -*- mode: rst ; ispell-local-dictionary: "american" -*-

Frequently Asked Questions
===============================

* *How can I suppress these superfluous empty pages?*

 Short Answer: Specify the desired output size using the same
 page-name as the medium-size::

 pdfposter -mA5 -p2xA5 in.pdf out.pdf

 Long Answer: If you are running::

 pdfposter -mA5 -pA4 in.pdf out.pdf

 you most probably expect the result to be 2 A5-pages large, but you
 will get *three* pages, where the third seams to be empty. (If you
 have a full-colored background, you will find a small line on the
 third page.)

 And this is what went wrong:

 In the command above, you *say*: "The output should be A4 sized",
 while you *mean*: "The output should fit on two A5 pages".

 Basically you are right, if you say "hey, this ought to be the
 same!". It is a scaling or rounding issue caused by ISO page sizes
 not scaling exactly (even as they should, see `ISO 216
 <http://en.wikipedia.org/wiki/ISO_216>`_). For example since A4 is
 297 mm high, A5 should be 148.5 mm wide, but is only 148 mm wide.

 So the solution is to specify on the command-line what you want:
 "should fit on two A5 pages"::

 pdfposter -mA5 -p2xA5 in.pdf out.pdf

* Are there other Python tools for manipulating PDF?

 Yes, there are: These tools even use the `pyPDF package
 <http://pybrary.net/pyPdf/>`_ as pdfposter does. Thus installing
 them will only require a small amount of disk space.

 * `pdfnup <http://pypi.python.org/pypi/pdfnup/>`_
 * `pdfsplit <http://pypi.python.org/pypi/pdfsplit/>`_
 * `pdfgrid <http://pypi.python.org/pypi/pdfgrid/>`_

pdftools.pdfposter-0.6.0/docs/pdfposter.html

pdfposter

Scale and tile PDF images/pages to print on multiple pages.

			Author:			Hartmut Goebel <h.goebel@crazy-compilers.com>

			Version:			Version 0.6.0

			Copyright:			2008-2013 by Hartmut Goebel

			Licence:			GNU Public Licence v3 (GPLv3)

			Manual section:			1

SYNOPSIS

pdfposter <options> infile outfile

DESCRIPTION

Pdfposter can be used to create a large poster by building it from
multple pages and/or printing it on large media. It expects as input a
PDF file, normally printing on a single page. The output is again a
PDF file, maybe containing multiple pages together building the
poster.
The input page will be scaled to obtain the desired size.

The program uses a simple but efficient method which is possible with
PDF: All new pages share the same data stream of the scaled page. Thus
resulting file grows moderatly.

To control its operation, you need to specify either the size of the
desired poster or a scale factor for the image:

			Given the poster size, it calculates the required number of sheets
to print on, and from that a scale factor to fill these sheets
optimally with the input image.

			Given a scale factor, it derives the required number of pages from
the input image size, and positions the scaled image centered on
this area.

OPTIONS

General Options

			
--version			Show program's version number and exit

			
-h, --help			Show help message and exit

			
--help-media-names

			 			List available media and distance names and exit

			
-v, --verbose			Be verbose. Tell about scaling, rotation and number of
pages. Can be used more than once to increase the
verbosity.

			
-n, --dry-run			Show what would have been done, but do not generate files.

			
-A, --art-box			Use the content area defined by the ArtBox (default:
use the area defined by the TrimBox)

Defining Output

			
-m BOX, --media-size=BOX

			 			Specify the desired media size to print on.
See below for BOX. The default is A4 in the standard
package.

			
-p BOX, --poster-size=BOX

			 			Specify the poster size. See below for BOX.
pdfposter will autonomously choose scaling and rotation to
best fit the input onto the poster (see EXAMPLES below).

If you give neither the -s nor the -p option, the default
poster size is identical to the media size.

			
-s NUMBER			Specify a linear scaling factor to produce the poster.
Together with the input image size and optional margins,
this induces an output poster size. So don't specify both -s
and -p.

Default is deriving the scale factor to fit a given poster
size.

Box Definition

The BOX mentioned above is a specification of horizontal and
vertical size. The syntax is as follows (with multipier being
specified optionally):

box = [multiplier] unit

multiplier = number "x" number

unit = medianame or distancename

Many international media names are recognised by the program, in upper
and lower case, and can be shortened to their first few characters, as
long as unique. For instance 'A0', 'Let'. Distance names are like
'cm', 'inch', 'ft'.

Medias are typically not quadratic but rectangular, which means width
and hight differ. Thus using medianames is a bit tricky:

			10x20cm:			obviuos: 10 cm x 20 cm (portrait)

			20x10cm:			same as 10x20cm, since all boxes are rotated to portrait
format

Now when using medianames it gets tricky:

			1x1a4:			same as approx. 21x29cm (21 cm x 29 cm, portrait)

			1x2a4:			same as approx. 21x58cm (21 cm x 58 cm, portrait)

This are two a4 pages put together at the small side: One
portrait page wide and two portrait pages high.

			2x1a4:			same as approx. 42x29cm, which is rotated to portrait and is
the same a 29x42cm (29 cm x 42 cm)

This are two a4 pages put together at the long side: Two
portrait pages wide and one portrait page high.

EXAMPLES

			pdfposter -mA3 -pA0 a4.pdf out.pdf:

			 			Prints an A4 input file on 8 A3 pages, forming an A0 poster.

			pdfposter -p3x3Let a4.pdf out.pdf:

			 			Prints an inputfile on a poster of 3x3 Letter pages.

			pdfposter -mA0 input.pdf out.pdf:

			 			Enlarges an inputfile to print on a large-media A0 capable
device.

			pdfposter -s4 input.pdf out.pdf:

			 			Enlarge an inputfile exactly 4 times, print on the default A4
media, and let pdfposter determine the number of pages
required.

			pdfposter -m10x10cm -pa0 a4.pdf out.pdf:

			 			Just to show how efficient pdfposter is: This will create a file
containing 192 pages, but only 15 times as big as the single page.
With a4.pdf being a quite empty page, this ratio should be even
better for filled pages.

More examples including sample pictures can be found at
http://pythonhosted.org/pdftools.pdfposter/examples

Examples for automatic scaling

			For printing 2 portrait A4 pages high (approx. 58cm) and let
pdfposter determine how many portrait pages wide, specify a lage
number of vertical pages. eg:

			pdfposter -p999x2a4 testpage-wide.pdf out.pdf:

			 			

			For printing 2 landscape A4 pages high (approx. 20cm) and let
pdfposter determine how many landscape pages wide, specify a lage
number of horizontal pages. eg:

			pdfposter -p2x999a4 testpage-wide.pdf out.pdf:

			 			

SEE ALSO

poster(1),
pdfnup(1) http://pypi.python.org/pypi/pdfnup/,
pdfsplit(1) http://pypi.python.org/pypi/pdfsplit/,
pdfgrid(1) http://pypi.python.org/pypi/pdfgrid/

Project Homepage http://pythonhosted.org/pdftools.pdfposter/

pdftools.pdfposter-0.6.0/docs/Development.rst

.. -*- mode: rst ; ispell-local-dictionary: "american" -*-

Development
===============================

The source of `pdfposter` and its siblings is maintained at
`gitorious.org <http://www.gitorious.org>`_. Patches and pull-requests
are hearty welcome.

* You may browse the current repository at the
 `Repository Browser
 <https://www.gitorious.org/pdftools/pdfposter>`_

* Or you may check out the current version by running::

 git clone git://gitorious.org/pdftools/pdfposter.git

Issue Tracker: Sorry, since we needed to move away from origo (see
below), we currently do not have an issue tracker. Tips where good
hosted trackers are available are welcome.

Historical Note: `pdfposter` was hosted at origo.ethz.ch, but this
site closed at 2012-05-31.

pdftools.pdfposter-0.6.0/docs/Makefile

Makefile for Sphinx documentation
#

You can set these variables from the command line.
SPHINXOPTS =
SPHINXBUILD = sphinx-build
PAPER =
BUILDDIR = _build

Internal variables.
PAPEROPT_a4 = -D latex_paper_size=a4
PAPEROPT_letter = -D latex_paper_size=letter
ALLSPHINXOPTS = -d $(BUILDDIR)/doctrees $(PAPEROPT_$(PAPER)) $(SPHINXOPTS) .
the i18n builder cannot share the environment and doctrees with the others
I18NSPHINXOPTS = $(PAPEROPT_$(PAPER)) $(SPHINXOPTS) .

.PHONY: help clean html dirhtml singlehtml pickle json htmlhelp qthelp devhelp epub latex latexpdf text man changes linkcheck doctest gettext

help:
	@echo "Please use \`make <target>' where <target> is one of"
	@echo " html to make standalone HTML files"
	@echo " dirhtml to make HTML files named index.html in directories"
	@echo " singlehtml to make a single large HTML file"
	@echo " pickle to make pickle files"
	@echo " json to make JSON files"
	@echo " htmlhelp to make HTML files and a HTML help project"
	@echo " qthelp to make HTML files and a qthelp project"
	@echo " devhelp to make HTML files and a Devhelp project"
	@echo " epub to make an epub"
	@echo " latex to make LaTeX files, you can set PAPER=a4 or PAPER=letter"
	@echo " latexpdf to make LaTeX files and run them through pdflatex"
	@echo " text to make text files"
	@echo " man to make manual pages"
	@echo " texinfo to make Texinfo files"
	@echo " info to make Texinfo files and run them through makeinfo"
	@echo " gettext to make PO message catalogs"
	@echo " changes to make an overview of all changed/added/deprecated items"
	@echo " linkcheck to check all external links for integrity"
	@echo " doctest to run all doctests embedded in the documentation (if enabled)"

clean:
	-rm -rf $(BUILDDIR)/*

html:
	$(SPHINXBUILD) -b html $(ALLSPHINXOPTS) $(BUILDDIR)/html
	@echo
	@echo "Build finished. The HTML pages are in $(BUILDDIR)/html."

dirhtml:
	$(SPHINXBUILD) -b dirhtml $(ALLSPHINXOPTS) $(BUILDDIR)/dirhtml
	@echo
	@echo "Build finished. The HTML pages are in $(BUILDDIR)/dirhtml."

singlehtml:
	$(SPHINXBUILD) -b singlehtml $(ALLSPHINXOPTS) $(BUILDDIR)/singlehtml
	@echo
	@echo "Build finished. The HTML page is in $(BUILDDIR)/singlehtml."

pickle:
	$(SPHINXBUILD) -b pickle $(ALLSPHINXOPTS) $(BUILDDIR)/pickle
	@echo
	@echo "Build finished; now you can process the pickle files."

json:
	$(SPHINXBUILD) -b json $(ALLSPHINXOPTS) $(BUILDDIR)/json
	@echo
	@echo "Build finished; now you can process the JSON files."

htmlhelp:
	$(SPHINXBUILD) -b htmlhelp $(ALLSPHINXOPTS) $(BUILDDIR)/htmlhelp
	@echo
	@echo "Build finished; now you can run HTML Help Workshop with the" \
	 ".hhp project file in $(BUILDDIR)/htmlhelp."

qthelp:
	$(SPHINXBUILD) -b qthelp $(ALLSPHINXOPTS) $(BUILDDIR)/qthelp
	@echo
	@echo "Build finished; now you can run "qcollectiongenerator" with the" \
	 ".qhcp project file in $(BUILDDIR)/qthelp, like this:"
	@echo "# qcollectiongenerator $(BUILDDIR)/qthelp/pdftoolsPDFposter.qhcp"
	@echo "To view the help file:"
	@echo "# assistant -collectionFile $(BUILDDIR)/qthelp/pdftoolsPDFposter.qhc"

devhelp:
	$(SPHINXBUILD) -b devhelp $(ALLSPHINXOPTS) $(BUILDDIR)/devhelp
	@echo
	@echo "Build finished."
	@echo "To view the help file:"
	@echo "# mkdir -p $$HOME/.local/share/devhelp/pdftoolsPDFposter"
	@echo "# ln -s $(BUILDDIR)/devhelp $$HOME/.local/share/devhelp/pdftoolsPDFposter"
	@echo "# devhelp"

epub:
	$(SPHINXBUILD) -b epub $(ALLSPHINXOPTS) $(BUILDDIR)/epub
	@echo
	@echo "Build finished. The epub file is in $(BUILDDIR)/epub."

latex:
	$(SPHINXBUILD) -b latex $(ALLSPHINXOPTS) $(BUILDDIR)/latex
	@echo
	@echo "Build finished; the LaTeX files are in $(BUILDDIR)/latex."
	@echo "Run \`make' in that directory to run these through (pdf)latex" \
	 "(use \`make latexpdf' here to do that automatically)."

latexpdf:
	$(SPHINXBUILD) -b latex $(ALLSPHINXOPTS) $(BUILDDIR)/latex
	@echo "Running LaTeX files through pdflatex..."
	$(MAKE) -C $(BUILDDIR)/latex all-pdf
	@echo "pdflatex finished; the PDF files are in $(BUILDDIR)/latex."

text:
	$(SPHINXBUILD) -b text $(ALLSPHINXOPTS) $(BUILDDIR)/text
	@echo
	@echo "Build finished. The text files are in $(BUILDDIR)/text."

man:
	$(SPHINXBUILD) -b man $(ALLSPHINXOPTS) $(BUILDDIR)/man
	@echo
	@echo "Build finished. The manual pages are in $(BUILDDIR)/man."

texinfo:
	$(SPHINXBUILD) -b texinfo $(ALLSPHINXOPTS) $(BUILDDIR)/texinfo
	@echo
	@echo "Build finished. The Texinfo files are in $(BUILDDIR)/texinfo."
	@echo "Run \`make' in that directory to run these through makeinfo" \
	 "(use \`make info' here to do that automatically)."

info:
	$(SPHINXBUILD) -b texinfo $(ALLSPHINXOPTS) $(BUILDDIR)/texinfo
	@echo "Running Texinfo files through makeinfo..."
	make -C $(BUILDDIR)/texinfo info
	@echo "makeinfo finished; the Info files are in $(BUILDDIR)/texinfo."

gettext:
	$(SPHINXBUILD) -b gettext $(I18NSPHINXOPTS) $(BUILDDIR)/locale
	@echo
	@echo "Build finished. The message catalogs are in $(BUILDDIR)/locale."

changes:
	$(SPHINXBUILD) -b changes $(ALLSPHINXOPTS) $(BUILDDIR)/changes
	@echo
	@echo "The overview file is in $(BUILDDIR)/changes."

linkcheck:
	$(SPHINXBUILD) -b linkcheck $(ALLSPHINXOPTS) $(BUILDDIR)/linkcheck
	@echo
	@echo "Link check complete; look for any errors in the above output " \
	 "or in $(BUILDDIR)/linkcheck/output.txt."

doctest:
	$(SPHINXBUILD) -b doctest $(ALLSPHINXOPTS) $(BUILDDIR)/doctest
	@echo "Testing of doctests in the sources finished, look at the " \
	 "results in $(BUILDDIR)/doctest/output.txt."

pdftools.pdfposter-0.6.0/docs/Examples.rst

.. -*- mode: rst ; ispell-local-dictionary: "american" -*-

Examples
===============================

These are some examples showing how to get a poster as you want.

For these examples we use two input pages:

.. figure:: /images/testpage-tall.preview.png
 :align: center
 :alt: ..
 :scale: 33%
 :figwidth: 45%

 The *tall* example input page (5.0 cm x 27.9 cm)

.. figure:: /images/testpage-wide.preview.png
 :align: center
 :alt: ..
 :scale: 33%
 :figwidth: 45%

 The *wide* example input page (27.9 cm x 5.0 cm).

These are intentionally uncommon formats so the effects of running
`pdfposter` will be more demonstrative.

Working With Portrait Images

Portrait images are higher than wide.

Example 1::

 pdfposter -p 2x1a4 testpage-tall.pdf out.pdf

This are two a4 pages put together at the *long* side: Two portrait
pages wide and one portrait page high.

.. image:: /images/poster-tall-2x1a4.png
 :scale: 33%
 :alt: Tall test-page as poster: Two portrait pages wide and one portrait page high.

Example 2::

 pdfposter -p 1x2a4 testpage-tall.pdf out.pdf

This are two a4 pages put together at the *small* side: One portrait
page wide and two portrait pages high.

.. image:: /images/poster-tall-1x2a4.png
 :scale: 33%
 :alt: Tall test-page as poster: One portrait page wide and two portrait pages high.

Working With Landscape Images

Landscape images are wider than hight.

Example 1::

 pdfposter -p 2x1a4 testpage-wide.pdf out.pdf

This are two a4 pages put together at the long side: Two portrait pages wide and one portrait page high.

.. image:: /images/poster-wide-2x1a4.png
 :scale: 33%
 :alt: Wide test-page as poster: Two portrait pages wide and one portrait page high.

Example 2::

 pdfposter -p 1x2a4 testpage-wide.pdf out.pdf

This are two a4 pages put together at the small side: One portrait page wide and two portrait pages high.

.. image:: /images/poster-wide-1x2a4.png
 :scale: 33%
 :alt: Wide test-page as poster: One portrait page wide and two portrait pages high.

pdftools.pdfposter-0.6.0/docs/index.rst

.. -*- mode: rst ; ispell-local-dictionary: "american" -*-

Welcome to pdftools.PDFposter's documentation!
==

.. container:: admonition topic

 Scale and tile PDF images/pages to print on multiple pages.

`Pdfposter` can be used to create a large poster by building it from
multiple pages and/or printing it on large media. It expects as input a
PDF file, normally printing on a single page. The output is again a
PDF file, maybe containing multiple pages together building the
poster. The input page will be scaled to obtain the desired size.

This is much like the well-known tool `poster` does for Postscript
files, but working with PDF. Since sometimes poster does not like your
files converted from PDF. :-) Indeed `pdfposter` was inspired by `poster`.

Contents:

.. toctree::
 :maxdepth: 2

 Examples
 Frequently Asked Questions
 Development

Other tools for manipulating PDF

These tools are implemented in Python and use the `pyPDF package
<http://pybrary.net/pyPdf/>`_ as `pdfposter` does.

* `pdfnup <http://pypi.python.org/pypi/pdfnup/>`_
* `pdfsplit <http://pypi.python.org/pypi/pdfsplit/>`_
* `pdfgrid <http://pypi.python.org/pypi/pdfgrid/>`_

pdftools.pdfposter-0.6.0/ez_setup.py

#!python
"""Bootstrap setuptools installation

If you want to use setuptools in your package's setup.py, just include this
file in the same directory with it, and add this to the top of your setup.py::

 from ez_setup import use_setuptools
 use_setuptools()

If you want to require a specific version of setuptools, set a download
mirror, or use an alternate download directory, you can do so by supplying
the appropriate options to ``use_setuptools()``.

This file can also be run as a script to install or upgrade setuptools.
"""
import sys
DEFAULT_VERSION = "0.6c9"
DEFAULT_URL = "http://pypi.python.org/packages/%s/s/setuptools/" % sys.version[:3]

md5_data = {
 'setuptools-0.6b1-py2.3.egg': '8822caf901250d848b996b7f25c6e6ca',
 'setuptools-0.6b1-py2.4.egg': 'b79a8a403e4502fbb85ee3f1941735cb',
 'setuptools-0.6b2-py2.3.egg': '5657759d8a6d8fc44070a9d07272d99b',
 'setuptools-0.6b2-py2.4.egg': '4996a8d169d2be661fa32a6e52e4f82a',
 'setuptools-0.6b3-py2.3.egg': 'bb31c0fc7399a63579975cad9f5a0618',
 'setuptools-0.6b3-py2.4.egg': '38a8c6b3d6ecd22247f179f7da669fac',
 'setuptools-0.6b4-py2.3.egg': '62045a24ed4e1ebc77fe039aa4e6f7e5',
 'setuptools-0.6b4-py2.4.egg': '4cb2a185d228dacffb2d17f103b3b1c4',
 'setuptools-0.6c1-py2.3.egg': 'b3f2b5539d65cb7f74ad79127f1a908c',
 'setuptools-0.6c1-py2.4.egg': 'b45adeda0667d2d2ffe14009364f2a4b',
 'setuptools-0.6c2-py2.3.egg': 'f0064bf6aa2b7d0f3ba0b43f20817c27',
 'setuptools-0.6c2-py2.4.egg': '616192eec35f47e8ea16cd6a122b7277',
 'setuptools-0.6c3-py2.3.egg': 'f181fa125dfe85a259c9cd6f1d7b78fa',
 'setuptools-0.6c3-py2.4.egg': 'e0ed74682c998bfb73bf803a50e7b71e',
 'setuptools-0.6c3-py2.5.egg': 'abef16fdd61955514841c7c6bd98965e',
 'setuptools-0.6c4-py2.3.egg': 'b0b9131acab32022bfac7f44c5d7971f',
 'setuptools-0.6c4-py2.4.egg': '2a1f9656d4fbf3c97bf946c0a124e6e2',
 'setuptools-0.6c4-py2.5.egg': '8f5a052e32cdb9c72bcf4b5526f28afc',
 'setuptools-0.6c5-py2.3.egg': 'ee9fd80965da04f2f3e6b3576e9d8167',
 'setuptools-0.6c5-py2.4.egg': 'afe2adf1c01701ee841761f5bcd8aa64',
 'setuptools-0.6c5-py2.5.egg': 'a8d3f61494ccaa8714dfed37bccd3d5d',
 'setuptools-0.6c6-py2.3.egg': '35686b78116a668847237b69d549ec20',
 'setuptools-0.6c6-py2.4.egg': '3c56af57be3225019260a644430065ab',
 'setuptools-0.6c6-py2.5.egg': 'b2f8a7520709a5b34f80946de5f02f53',
 'setuptools-0.6c7-py2.3.egg': '209fdf9adc3a615e5115b725658e13e2',
 'setuptools-0.6c7-py2.4.egg': '5a8f954807d46a0fb67cf1f26c55a82e',
 'setuptools-0.6c7-py2.5.egg': '45d2ad28f9750e7434111fde831e8372',
 'setuptools-0.6c8-py2.3.egg': '50759d29b349db8cfd807ba8303f1902',
 'setuptools-0.6c8-py2.4.egg': 'cba38d74f7d483c06e9daa6070cce6de',
 'setuptools-0.6c8-py2.5.egg': '1721747ee329dc150590a58b3e1ac95b',
 'setuptools-0.6c9-py2.3.egg': 'a83c4020414807b496e4cfbe08507c03',
 'setuptools-0.6c9-py2.4.egg': '260a2be2e5388d66bdaee06abec6342a',
 'setuptools-0.6c9-py2.5.egg': 'fe67c3e5a17b12c0e7c541b7ea43a8e6',
 'setuptools-0.6c9-py2.6.egg': 'ca37b1ff16fa2ede6e19383e7b59245a',
}

import sys, os
try: from hashlib import md5
except ImportError: from md5 import md5

def _validate_md5(egg_name, data):
 if egg_name in md5_data:
 digest = md5(data).hexdigest()
 if digest != md5_data[egg_name]:
 print >>sys.stderr, (
 "md5 validation of %s failed! (Possible download problem?)"
 % egg_name
)
 sys.exit(2)
 return data

def use_setuptools(
 version=DEFAULT_VERSION, download_base=DEFAULT_URL, to_dir=os.curdir,
 download_delay=15
):
 """Automatically find/download setuptools and make it available on sys.path

 `version` should be a valid setuptools version number that is available
 as an egg for download under the `download_base` URL (which should end with
 a '/'). `to_dir` is the directory where setuptools will be downloaded, if
 it is not already available. If `download_delay` is specified, it should
 be the number of seconds that will be paused before initiating a download,
 should one be required. If an older version of setuptools is installed,
 this routine will print a message to ``sys.stderr`` and raise SystemExit in
 an attempt to abort the calling script.
 """
 was_imported = 'pkg_resources' in sys.modules or 'setuptools' in sys.modules
 def do_download():
 egg = download_setuptools(version, download_base, to_dir, download_delay)
 sys.path.insert(0, egg)
 import setuptools; setuptools.bootstrap_install_from = egg
 try:
 import pkg_resources
 except ImportError:
 return do_download()
 try:
 pkg_resources.require("setuptools>="+version); return
 except pkg_resources.VersionConflict, e:
 if was_imported:
 print >>sys.stderr, (
 "The required version of setuptools (>=%s) is not available, and\n"
 "can't be installed while this script is running. Please install\n"
 " a more recent version first, using 'easy_install -U setuptools'."
 "\n\n(Currently using %r)"
) % (version, e.args[0])
 sys.exit(2)
 else:
 del pkg_resources, sys.modules['pkg_resources'] # reload ok
 return do_download()
 except pkg_resources.DistributionNotFound:
 return do_download()

def download_setuptools(
 version=DEFAULT_VERSION, download_base=DEFAULT_URL, to_dir=os.curdir,
 delay = 15
):
 """Download setuptools from a specified location and return its filename

 `version` should be a valid setuptools version number that is available
 as an egg for download under the `download_base` URL (which should end
 with a '/'). `to_dir` is the directory where the egg will be downloaded.
 `delay` is the number of seconds to pause before an actual download attempt.
 """
 import urllib2, shutil
 egg_name = "setuptools-%s-py%s.egg" % (version,sys.version[:3])
 url = download_base + egg_name
 saveto = os.path.join(to_dir, egg_name)
 src = dst = None
 if not os.path.exists(saveto): # Avoid repeated downloads
 try:
 from distutils import log
 if delay:
 log.warn("""

This script requires setuptools version %s to run (even to display
help). I will attempt to download it for you (from
%s), but
you may need to enable firewall access for this script first.
I will start the download in %d seconds.

(Note: if this machine does not have network access, please obtain the file

 %s

and place it in this directory before rerunning this script.)
---""",
 version, download_base, delay, url
); from time import sleep; sleep(delay)
 log.warn("Downloading %s", url)
 src = urllib2.urlopen(url)
 # Read/write all in one block, so we don't create a corrupt file
 # if the download is interrupted.
 data = _validate_md5(egg_name, src.read())
 dst = open(saveto,"wb"); dst.write(data)
 finally:
 if src: src.close()
 if dst: dst.close()
 return os.path.realpath(saveto)

def main(argv, version=DEFAULT_VERSION):
 """Install or upgrade setuptools and EasyInstall"""
 try:
 import setuptools
 except ImportError:
 egg = None
 try:
 egg = download_setuptools(version, delay=0)
 sys.path.insert(0,egg)
 from setuptools.command.easy_install import main
 return main(list(argv)+[egg]) # we're done here
 finally:
 if egg and os.path.exists(egg):
 os.unlink(egg)
 else:
 if setuptools.__version__ == '0.0.1':
 print >>sys.stderr, (
 "You have an obsolete version of setuptools installed. Please\n"
 "remove it from your system entirely before rerunning this script."
)
 sys.exit(2)

 req = "setuptools>="+version
 import pkg_resources
 try:
 pkg_resources.require(req)
 except pkg_resources.VersionConflict:
 try:
 from setuptools.command.easy_install import main
 except ImportError:
 from easy_install import main
 main(list(argv)+[download_setuptools(delay=0)])
 sys.exit(0) # try to force an exit
 else:
 if argv:
 from setuptools.command.easy_install import main
 main(argv)
 else:
 print "Setuptools version",version,"or greater has been installed."
 print '(Run "ez_setup.py -U setuptools" to reinstall or upgrade.)'

def update_md5(filenames):
 """Update our built-in md5 registry"""

 import re

 for name in filenames:
 base = os.path.basename(name)
 f = open(name,'rb')
 md5_data[base] = md5(f.read()).hexdigest()
 f.close()

 data = [" %r: %r,\n" % it for it in md5_data.items()]
 data.sort()
 repl = "".join(data)

 import inspect
 srcfile = inspect.getsourcefile(sys.modules[__name__])
 f = open(srcfile, 'rb'); src = f.read(); f.close()

 match = re.search("\nmd5_data = {\n([^}]+)}", src)
 if not match:
 print >>sys.stderr, "Internal error!"
 sys.exit(2)

 src = src[:match.start(1)] + repl + src[match.end(1):]
 f = open(srcfile,'w')
 f.write(src)
 f.close()

if __name__=='__main__':
 if len(sys.argv)>2 and sys.argv[1]=='--md5update':
 update_md5(sys.argv[2:])
 else:
 main(sys.argv[1:])

pdftools.pdfposter-0.6.0/test/gen-testpages.py

#!/usr/bin/env python
-*- coding: utf-8 -*-
#
Copyright 2013 by Elena Grandi <elena.valhalla@gmail.com>
Copyright 2008-2013 by Hartmut Goebel <h.goebel@crazy-compilers.com>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
#
"""
Generate test PDF documents for pdfposter.

This generates a PDF-file containing a portrait and a landscape page,
DIN A4.
"""

__author__ = "Hartmut Goebel <h.goebel@crazy-compilers.com>"
__copyright__ = "Copyright 2008-2013 by Hartmut Goebel <h.goebel@crazy-compilers.com>"
__licence__ = "GNU General Public License version 3 (GPL v3)"

from reportlab.lib.units import mm
from reportlab.lib.colors import black
from reportlab.lib.pagesizes import A4
from reportlab.pdfgen.canvas import Canvas

def draw_numbers(canvas, numbers, size, margin, rows, cols):
 step_x = (size[0] - margin*2)/cols
 step_y = (size[1] - margin*2)/rows
 for i, n in enumerate(numbers):
 canvas.drawCentredString(margin + step_x / 2 + step_x * (i%cols),
 margin + step_y / 2 + (rows - 1 - i / cols) * step_y, n)

def genTestFile(filename):
 size = A4
 numbers = ['1', '2', '3', '4', '5', '6']
 margin = 20*mm

 #----------- generate the PDF -----------
 # 1st page (portrait)
 canv = Canvas(filename, pagesize=size)
 canv.setFont("Helvetica", 72)
 canv.setStrokeColor(black)

 # draw the content
 draw_numbers(canv,numbers,size,margin,3,2)
 canv.rect(margin, margin, size[0] - margin * 2,
 size[1] - margin * 2, fill=0, stroke=1)

 # close page
 canv.showPage()

 # second page (landscape)
 size = (size[1],size[0])
 canv.setPageSize(size)
 canv.setFont("Helvetica", 72)
 canv.setStrokeColor(black)

 # draw the content
 draw_numbers(canv,numbers,size,margin,2,3)
 canv.rect(margin, margin, size[0] - margin * 2,
 size[1] - margin * 2, fill=0, stroke=1)

 # close page, save PDF
 canv.showPage()
 canv.save()

if __name__ == '__main__':
 import argparse
 parser = argparse.ArgumentParser()
 parser.add_argument('filename',
 help='Name of output file')
 args = parser.parse_args()
 genTestFile(args.filename)

pdftools.pdfposter-0.6.0/test/gen-allboxespage.py

#!/usr/bin/env python
-*- coding: utf-8 -*-
#
Copyright 2008-2013 by Hartmut Goebel <h.goebel@crazy-compilers.com>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
#
"""
Generate test PDF documents for pdfposter
"""

__author__ = "Hartmut Goebel <h.goebel@crazy-compilers.com>"
__copyright__ = "Copyright 2008-2013 by Hartmut Goebel <h.goebel@crazy-compilers.com>"
__licence__ = "GNU General Public License version 3 (GPL v3)"

from reportlab.lib.units import mm, cm
from reportlab.lib.colors import black, white, pink, lightblue, blue
from reportlab.lib.pagesizes import A4, legal, landscape
from reportlab.pdfgen.canvas import Canvas

from pyPdf import PdfFileWriter, PdfFileReader
from pyPdf.generic import RectangleObject

def draw_box(canvas, color, x,y, width,height, text=None):
 canvas.setStrokeColorRGB(*color)
 canvas.rect(x,y, width,height)
 if text:
 canvas.setFillColorRGB(*color)
 canvas.setFont("Helvetica", 3*mm)
 canvas.drawString(x+1*mm, y+1*mm, text)

def genTestFile(filename1, filename2):
 stepSize = 2*cm
 size = A4
 bleed = 3*mm
 trimmargin = 2*cm
 cutmargin = trimmargin-bleed

 #----------- generate the first PDF w/o boxes defined -----------
 canv = Canvas(filename1, pagesize=size)
 canv.setFont("Helvetica", 7*mm)
 canv.setStrokeColor(black)

 #--- draw the content
 # headline
 canv.setFillColor(lightblue)
 canv.rect(cutmargin, size[1]-cutmargin, size[0]-2*cutmargin, -(4*cm+bleed),
 fill=1, stroke=0)
 canv.setFillColor(black)
 canv.setFont("Helvetica", 12*mm)
 canv.drawCentredString(size[0]/2.0, size[1]-trimmargin-2.5*cm,
 "This is a headline")
 # main content
 canv.setFont("Helvetica", 7*mm)
 offset = 6*cm
 for x in range(5):
 for y in range(6):
 text = u"%x%x" % (x,y)
 if (x+y) % 2:
 canv.setFillColor(pink)
 else:
 canv.setFillColor(lightblue)
 canv.rect(offset+x*stepSize, offset+y*stepSize, stepSize, stepSize, fill=True)
 canv.setFillColor(black)
 canv.drawCentredString(offset+(x+0.5)*stepSize, offset+(y+0.4)*stepSize, text)
 canv.drawCentredString(size[0]/2.0, offset-1.7*cm,
 "His is a caption")

 # draw the artbox
 artRect = (offset-1*cm, offset-2.5*cm, 2*cm+5*stepSize, 3.5*cm+6*stepSize)
 draw_box(canv, (1,0,1), *artRect, text="art box")
 # draw trimbox
 draw_box(canv, (0,1,0),
 trimmargin, trimmargin, size[0]-2*trimmargin, size[1]-2*trimmargin,
 text="trim box")
 # draw bleedbox
 draw_box(canv, (0,0,1),
 cutmargin, cutmargin, size[0]-2*cutmargin, size[1]-2*cutmargin)

 # draw horizonal cut marks
 canv.line(0, trimmargin, cutmargin, trimmargin)
 canv.line(size[0],trimmargin, size[0]-cutmargin,trimmargin)
 canv.line(0, size[1]-trimmargin, cutmargin, size[1]-trimmargin)
 canv.line(size[0],size[1]-trimmargin, size[0]-cutmargin,size[1]-trimmargin)
 # draw vertical cut marks
 canv.line(trimmargin, 0, trimmargin, cutmargin)
 canv.line(size[0]-trimmargin,0, size[0]-trimmargin,cutmargin)
 canv.line(trimmargin, size[1], trimmargin, size[1]-cutmargin)
 canv.line(size[0]-trimmargin,size[1], size[0]-trimmargin,size[1]-cutmargin)

 # save the pdf file
 canv.showPage()
 canv.save()

 #----------- generate the second PDF w/ trimbox, bleedbox, artbox set
 reader = PdfFileReader(open(filename1, "rb"))
 writer = PdfFileWriter()
 page = reader.getPage(0)

 x0, y0, x1, y1 = map(float, page.mediaBox)
 assert x0 == 0
 assert y0 == 0
 assert round(x1, 2) == round(size[0], 2)
 assert round(y1, 2) == round(size[1], 2)
 page.bleedBox = RectangleObject((x0+cutmargin, y0+cutmargin,
 x1-cutmargin, y1-cutmargin))
 page.trimBox = RectangleObject((x0+trimmargin, y0+trimmargin,
 x1-trimmargin, y1-trimmargin))
 page.artBox = RectangleObject((artRect[0], artRect[1],
 artRect[0]+artRect[2],
 artRect[1]+artRect[3]))
 writer.addPage(page)

 outputStream = open(filename2, "wb")
 writer.write(outputStream)
 outputStream.close()

if __name__ == '__main__':
 import argparse
 parser = argparse.ArgumentParser()
 parser.add_argument('filename1',
 help='Name of output file w/o box metrics within')
 parser.add_argument('filename2',
 help='Name of output file w/ box metrics')
 args = parser.parse_args()
 genTestFile(args.filename1, args.filename2)

pdftools.pdfposter-0.6.0/test/test_box.py

#!/usr/bin/env python
#
Copyright 2012-2013 by Hartmut Goebel <h.goebel@crazy-compilers.com>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
#

__author__ = "Hartmut Goebel <h.goebel@crazy-compilers.com>"
__copyright__ = "Copyright 2012-2013 by Hartmut Goebel <h.goebel@crazy-compilers.com>"
__licence__ = "GNU General Public License version 3 (GPL v3)"

import unittest
from pdftools.pdfposter.cmd import __parse_box as parse_box

class ArgParserError(Exception): pass

class PseudoParser:
 def error(self, msg):
 raise ArgParserError(msg)

class TextBoxes(unittest.TestCase):

 def _parse_box(self, value, allow_offset=False):
 return parse_box('--poster', value, PseudoParser(), allow_offset)

 def assertBoxValue(self, box, k, v):
 self.assertEqual(box[k], v, 'box[%r] == %r != %r' % (k, box[k], v))

 def test_papersize_abbreviation(self):
 box = self._parse_box('1x1let')
 self.assertBoxValue(box, 'unit', 'letter')
 box = self._parse_box('1x1envdin')
 self.assertBoxValue(box, 'unit', 'envdinlang')

 def test_ambiguous_papersize_abbreviation_raises(self):
 self.assertRaisesRegexp(
 ArgParserError, "papersize name .* is not unique",
 self._parse_box, '1x1a')

 def test_unknown_papersize_raises(self):
 self.assertRaisesRegexp(
 ArgParserError, "I don't understand your papersize name",
 self._parse_box, '1x2yyy')
 self.assertRaisesRegexp(
 ArgParserError, "I don't understand your papersize name",
 self._parse_box, '1x2xxx')

 def test_wrong_box_definition_raises(self):
 self.assertRaisesRegexp(
 ArgParserError, "I don't understand your box specification",
 self._parse_box, '2yyy')
 self.assertRaisesRegexp(
 ArgParserError, "I don't understand your box specification",
 self._parse_box, '2xxx')

 def test_disallowed_offset_raises(self):
 self.assertRaisesRegexp(
 ArgParserError, "Offset not allowed in box definition",
 self._parse_box, '1x1+10,10a4')
 # not even if zero
 self.assertRaisesRegexp(
 ArgParserError, "Offset not allowed in box definition",
 self._parse_box, '1x1+0,0a4')

 def test_missing_offset_raises(self):
 self.assertRaisesRegexp(
 ArgParserError, "I don't understand your box specification",
 self._parse_box, '1x1+a4')

 def test_allowed_offset_does_not_raise(self):
 self._parse_box('1x1+10,10a4', allow_offset=True)
 self._parse_box('1x1+0,0a4', allow_offset=True)

 def test_some_standard_papersizes(self):
 box = self._parse_box('1x1a4')
 for k, v in (
 ('width', 595),
 ('height', 842),
 ('offset_x', 0),
 ('offset_y', 0),
 ('unit', 'a4'),
 ('units_x', 1),
 ('units_y', 1)):
 self.assertBoxValue(box, k, v)
 box = self._parse_box('a4')
 for k, v in (
 ('width', 595),
 ('height', 842),
 ('offset_x', 0),
 ('offset_y', 0),
 ('unit', 'a4'),
 ('units_x', 1),
 ('units_y', 1)):
 self.assertBoxValue(box, k, v)
 box = self._parse_box('1x1tabloid')
 for k, v in (
 ('width', 792),
 ('height', 1224),
 ('offset_x', 0),
 ('offset_y', 0),
 ('unit', 'tabloid'),
 ('units_x', 1),
 ('units_y', 1)):
 self.assertBoxValue(box, k, v)

 def test_multiplier(self):
 box = self._parse_box('2x2a4')
 for k, v in (
 ('width', 2 * 595),
 ('height', 2 * 842),
 ('offset_x', 0),
 ('offset_y', 0),
 ('unit', 'a4'),
 ('units_x', 2),
 ('units_y', 2)):
 self.assertBoxValue(box, k, v)
 box = self._parse_box('7.2x3.5a4')
 for k, v in (
 ('width', 7.2 * 595),
 ('height', 3.5 * 842),
 ('offset_x', 0),
 ('offset_y', 0),
 ('unit', 'a4'),
 ('units_x', 7.2),
 ('units_y', 3.5)):
 self.assertBoxValue(box, k, v)

 def test_complex_box_specification(self):
 box = self._parse_box('7.2x3.5+1.5,0.3a4', allow_offset=True)
 for k, v in (
 ('width', 7.2 * 595),
 ('height', 3.5 * 842),
 ('offset_x', 1.5 * 595),
 ('offset_y', 0.3 * 842),
 ('unit', 'a4'),
 ('units_x', 7.2),
 ('units_y', 3.5)):
 self.assertBoxValue(box, k, v)

if __name__ == '__main__':
 unittest.main()

pdftools.pdfposter-0.6.0/test/trimmedpage.pdf

Full size

trim box: set
bleed box: set
art box: not set

00

01

02

10

11

12

20

21

22

His is a caption
art box

trim box

Half width

trim box: set
bleed box: set
art box: not set

00

01

02

10

11

12

20

21

22

His is a caption
art box

trim box

Half width

trim box: set
bleed box: set
art box: not set

00

01

02

10

11

12

20

21

22

His is a caption
art box

Half width

trim box: not set
bleed box: not set
art box: not set

00

01

02

10

11

12

20

21

22

His is a caption
art box

trim box

Half width

trim box: not set
bleed box: not set
art box: not set

00

01

02

10

11

12

20

21

22

His is a caption
art box

pdftools.pdfposter-0.6.0/test/allboxes.pdf

This is a headline

00

01

02

03

04

05

10

11

12

13

14

15

20

21

22

23

24

25

30

31

32

33

34

35

40

41

42

43

44

45

His is a caption
art box

trim box

pdftools.pdfposter-0.6.0/test/allboxes-noboxes.pdf

This is a headline

00

01

02

03

04

05

10

11

12

13

14

15

20

21

22

23

24

25

30

31

32

33

34

35

40

41

42

43

44

45

His is a caption
art box

trim box

pdftools.pdfposter-0.6.0/test/gen-chessboard.py

#!/usr/bin/env python
-*- coding: utf-8 -*-
#
Copyright 2008-2013 by Hartmut Goebel <h.goebel@crazy-compilers.com>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
#
"""
Generate test PDF documents for pdfcrop.
"""

__author__ = "Hartmut Goebel <h.goebel@crazy-compilers.com>"
__copyright__ = "Copyright 2008-2013 by Hartmut Goebel <h.goebel@crazy-compilers.com>"
__licence__ = "GNU General Public License version 3 (GPL v3)"

from reportlab.lib.units import mm, cm
from reportlab.lib.colors import black, white, pink, lightblue, blue
from reportlab.lib.pagesizes import A4, legal, landscape
from reportlab.pdfgen.canvas import Canvas

def genTestFile(path, numPages):
 """Generate a PDF doc with a chess-board laout numbers on each page.
 Usefull for debugging cropped pages."""

 stepSize = 2*cm
 size = A4
 #size = (size[0] + lm + rm, size[1] + tm +bm)
 canv = Canvas(path, pagesize=size)
 for i in range(numPages):
 canv.setFont("Helvetica", 7*mm)
 canv.setStrokeColor(black)
 for x in range(int(size[0] / stepSize)):
 for y in range(int(size[1] / stepSize)):
 text = u"%x%x" % (x,y)
 if (x+y) % 2 == 1:
 canv.setFillColor(pink)
 else:
 canv.setFillColor(lightblue)
 canv.rect(x*stepSize, y*stepSize, stepSize, stepSize, fill=True)
 if i % 2 == 1:
 canv.setFillColor(black)
 else:
 canv.setFillColor(blue)
 canv.drawCentredString((x+0.5)*stepSize, (y+0.4)*stepSize, text)
 canv.showPage()
 canv.save()

if __name__ == '__main__':
 import argparse
 parser = argparse.ArgumentParser()
 parser.add_argument('-n','--num-pages',
 default=1, type=int,
 help='number of pages to generate (default: %(default)s)')
 parser.add_argument('filename',
 default="chessboard.pdf",
 help='Name of output file (default: %(default)s')
 args = parser.parse_args()
 genTestFile(args.filename, args.num_pages)

pdftools.pdfposter-0.6.0/test/gen-trimmedpage.py

#!/usr/bin/env python
-*- coding: utf-8 -*-
#
Copyright 2008-2013 by Hartmut Goebel <h.goebel@crazy-compilers.com>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
#
"""
Generate test PDF documents for pdfposter
"""

__author__ = "Hartmut Goebel <h.goebel@crazy-compilers.com>"
__copyright__ = "Copyright 2008-2013 by Hartmut Goebel <h.goebel@crazy-compilers.com>"
__licence__ = "GNU General Public License version 3 (GPL v3)"

try:
 import cStringIO as StringIO
except ImportError:
 import StringIO

from reportlab.lib.units import mm, cm
from reportlab.lib.colors import black, white, pink, lightblue, blue
from reportlab.lib.pagesizes import A4, legal, landscape
from reportlab.pdfgen.canvas import Canvas

from pyPdf import PdfFileWriter, PdfFileReader
from pyPdf.generic import RectangleObject

def draw_box(canvas, color, x,y, width,height, text=None):
 canvas.setStrokeColorRGB(*color)
 canvas.rect(x,y, width,height)
 if text:
 canvas.setFillColorRGB(*color)
 canvas.setFont("Helvetica", 3*mm)
 canvas.drawString(x+1*mm, y+1*mm, text)

def genTestFile(filename):
 stepSize = 2*cm
 bleed = 3*mm
 trimmargin = 2*cm
 cutmargin = trimmargin-bleed

 def genpage(canv, size,
 draw_trimbox, draw_bleedbox,
 set_trimbox, set_bleedbox, set_artbox,
 title):
 #--- draw the content
 # headline
 canv.setFillColor(lightblue)
 canv.rect(cutmargin, size[1]-cutmargin,
 size[0]-2*cutmargin, -(4*cm+bleed),
 fill=1, stroke=0)
 canv.setFillColor(black)
 canv.setFont("Helvetica", 12*mm)
 canv.drawCentredString(size[0]/2.0, size[1]-trimmargin-2.5*cm, title)
 canv.setFont("Helvetica", 5*mm)
 offset = 14*cm
 for v, n in (
 (set_trimbox, 'trim box'),
 (set_bleedbox, 'bleed box'),
 (set_artbox, 'art box'),
):
 if v:
 t = '%s: set' % n
 else:
 t = '%s: not set' % n
 canv.drawString(6*cm, offset, t)
 offset += 5*mm

 # main content
 canv.setFont("Helvetica", 7*mm)
 offset = 6*cm
 for x in range(3):
 for y in range(3):
 text = u"%x%x" % (x,y)
 if (x+y) % 2:
 canv.setFillColor(pink)
 else:
 canv.setFillColor(lightblue)
 canv.rect(offset+x*stepSize, offset+y*stepSize,
 stepSize, stepSize, fill=True)
 canv.setFillColor(black)
 canv.drawCentredString(offset+(x+0.5)*stepSize,
 offset+(y+0.4)*stepSize, text)
 canv.drawCentredString(size[0]/2.0, offset-1.7*cm,
 "His is a caption")

 # draw the artbox
 artRect = (offset-1*cm, offset-2.5*cm, 2*cm+3*stepSize, 3.5*cm+3*stepSize)
 draw_box(canv, (1,0,1), *artRect, text="art box")
 # draw trimbox
 if draw_trimbox:
 draw_box(canv, (0,1,0),
 trimmargin, trimmargin, size[0]-2*trimmargin, size[1]-2*trimmargin,
 text="trim box")
 # draw bleedbox
 if draw_bleedbox:
 draw_box(canv, (0,0,1),
 cutmargin, cutmargin, size[0]-2*cutmargin, size[1]-2*cutmargin)

 # save the pdf file
 canv.showPage()

 def set_boxes(pageNum, size,
 draw_trimbox, draw_bleedbox,
 set_trimbox, set_bleedbox, set_artbox,
 title):
 page = reader.getPage(pageNum)
 print 'Page', i, size
 if set_bleedbox:
 page.bleedBox = RectangleObject(
 (cutmargin, cutmargin,
 size[0]-cutmargin, size[1]-cutmargin))
 print ' bleed:', page.bleedBox
 if set_trimbox:
 page.trimBox = RectangleObject(
 (trimmargin, trimmargin,
 size[0]-trimmargin, size[1]-trimmargin))
 print ' trim:', page.trimBox
 if set_artbox:
 page.artBox = RectangleObject(artRect)
 print ' art:', page.artBox
 writer.addPage(page)

 #----------- generate the first PDF w/o boxes defined -----------
 canv = Canvas(None, pagesize=A4)

 CASES = (
 # size, draw, set, title
 (A4, 1, 1, 1, 1,0,'Full size'),
 ((A4[0]/2, A4[1]), 1, 1, 1,1,0, 'Half width'),
 ((A4[0]/2, A4[1]), 0, 0, 1,1,0, 'Half width'),
 ((A4[0]/2, A4[1]), 1, 1, 0,0,0, 'Half width'),
 ((A4[0]/2, A4[1]), 0, 0, 0,0,0, 'Half width'),
)
 #--- draw the content
 for args in CASES:
 genpage(canv, *args)
 #canv.save()
 pdfdata = canv.getpdfdata()

 #----------- generate the second PDF w/ trimbox, bleedbox, artbox set
 infile = StringIO.StringIO(pdfdata)
 reader = PdfFileReader(infile)
 writer = PdfFileWriter()
 for i, args in enumerate(CASES):
 set_boxes(i, *args)
 outputStream = open(filename, "wb")
 writer.write(outputStream)
 outputStream.close()

if __name__ == '__main__':
 import argparse
 parser = argparse.ArgumentParser()
 parser.add_argument('filename',
 help='Name of output file w/ box metrics')
 args = parser.parse_args()
 genTestFile(args.filename)

pdftools.pdfposter-0.6.0/test/testpages-a4.pdf

1 2

3 4

5 6

1 2 3

4 5 6

pdftools.pdfposter-0.6.0/PKG-INFO

Metadata-Version: 1.1
Name: pdftools.pdfposter
Version: 0.6.0
Summary: Scale and tile PDF images/pages to print on multiple pages.
Home-page: http://pythonhosted.org/pdftools.pdfposter/
Author: Hartmut Goebel
Author-email: h.goebel@crazy-compilers.com
License: GPL 3.0
Download-URL: http://pypi.python.org/pypi/pdftools.pdfposter/
Description:
 ``Pdfposter`` can be used to create a large poster by building it from
 multple pages and/or printing it on large media. It expects as input a
 PDF file, normally printing on a single page. The output is again a
 PDF file, maybe containing multiple pages together building the
 poster.
 The input page will be scaled to obtain the desired size.

 This is much like ``poster`` does for Postscript files, but working
 with PDF. Since sometimes poster does not like your files converted
 from PDF. :-) Indeed ``pdfposter`` was inspired by ``poster``.

 For more information please refere to the manpage or visit
 the `project homepage <http://pythonhosted.org/pdftools.pdfposter/>`_.

Keywords: pdf poster
Platform: UNKNOWN
Classifier: Development Status :: 5 - Production/Stable
Classifier: Environment :: Console
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: End Users/Desktop
Classifier: Intended Audience :: System Administrators
Classifier: License :: OSI Approved :: GNU General Public License (GPL)
Classifier: Natural Language :: English
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python
Classifier: Topic :: Printing
Classifier: Topic :: Utilities

pdftools.pdfposter-0.6.0/LICENSE-GPLv3.txt

 GNU GENERAL PUBLIC LICENSE
 Version 3, 29 June 2007

 Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

 Preamble

 The GNU General Public License is a free, copyleft license for
software and other kinds of works.

 The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.

 When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

 To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.

 For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.

 Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

 For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

 Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

 Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

 The precise terms and conditions for copying, distribution and
modification follow.

 TERMS AND CONDITIONS

 0. Definitions.

 "This License" refers to version 3 of the GNU General Public License.

 "Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

 "The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.

 To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.

 A "covered work" means either the unmodified Program or a work based
on the Program.

 To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

 To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

 An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

 1. Source Code.

 The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.

 A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

 The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

 The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

 The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.

 The Corresponding Source for a work in source code form is that
same work.

 2. Basic Permissions.

 All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

 You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

 Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

 3. Protecting Users' Legal Rights From Anti-Circumvention Law.

 No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

 When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.

 4. Conveying Verbatim Copies.

 You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

 You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

 5. Conveying Modified Source Versions.

 You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

 a) The work must carry prominent notices stating that you modified
 it, and giving a relevant date.

 b) The work must carry prominent notices stating that it is
 released under this License and any conditions added under section
 7. This requirement modifies the requirement in section 4 to
 "keep intact all notices".

 c) You must license the entire work, as a whole, under this
 License to anyone who comes into possession of a copy. This
 License will therefore apply, along with any applicable section 7
 additional terms, to the whole of the work, and all its parts,
 regardless of how they are packaged. This License gives no
 permission to license the work in any other way, but it does not
 invalidate such permission if you have separately received it.

 d) If the work has interactive user interfaces, each must display
 Appropriate Legal Notices; however, if the Program has interactive
 interfaces that do not display Appropriate Legal Notices, your
 work need not make them do so.

 A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

 6. Conveying Non-Source Forms.

 You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

 a) Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by the
 Corresponding Source fixed on a durable physical medium
 customarily used for software interchange.

 b) Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by a
 written offer, valid for at least three years and valid for as
 long as you offer spare parts or customer support for that product
 model, to give anyone who possesses the object code either (1) a
 copy of the Corresponding Source for all the software in the
 product that is covered by this License, on a durable physical
 medium customarily used for software interchange, for a price no
 more than your reasonable cost of physically performing this
 conveying of source, or (2) access to copy the
 Corresponding Source from a network server at no charge.

 c) Convey individual copies of the object code with a copy of the
 written offer to provide the Corresponding Source. This
 alternative is allowed only occasionally and noncommercially, and
 only if you received the object code with such an offer, in accord
 with subsection 6b.

 d) Convey the object code by offering access from a designated
 place (gratis or for a charge), and offer equivalent access to the
 Corresponding Source in the same way through the same place at no
 further charge. You need not require recipients to copy the
 Corresponding Source along with the object code. If the place to
 copy the object code is a network server, the Corresponding Source
 may be on a different server (operated by you or a third party)
 that supports equivalent copying facilities, provided you maintain
 clear directions next to the object code saying where to find the
 Corresponding Source. Regardless of what server hosts the
 Corresponding Source, you remain obligated to ensure that it is
 available for as long as needed to satisfy these requirements.

 e) Convey the object code using peer-to-peer transmission, provided
 you inform other peers where the object code and Corresponding
 Source of the work are being offered to the general public at no
 charge under subsection 6d.

 A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

 A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

 "Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

 If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

 The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

 Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

 7. Additional Terms.

 "Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

 When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

 Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

 a) Disclaiming warranty or limiting liability differently from the
 terms of sections 15 and 16 of this License; or

 b) Requiring preservation of specified reasonable legal notices or
 author attributions in that material or in the Appropriate Legal
 Notices displayed by works containing it; or

 c) Prohibiting misrepresentation of the origin of that material, or
 requiring that modified versions of such material be marked in
 reasonable ways as different from the original version; or

 d) Limiting the use for publicity purposes of names of licensors or
 authors of the material; or

 e) Declining to grant rights under trademark law for use of some
 trade names, trademarks, or service marks; or

 f) Requiring indemnification of licensors and authors of that
 material by anyone who conveys the material (or modified versions of
 it) with contractual assumptions of liability to the recipient, for
 any liability that these contractual assumptions directly impose on
 those licensors and authors.

 All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

 If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

 Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.

 8. Termination.

 You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

 However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

 Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

 Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

 9. Acceptance Not Required for Having Copies.

 You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

 10. Automatic Licensing of Downstream Recipients.

 Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

 An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

 You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

 11. Patents.

 A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".

 A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

 Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

 In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

 If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

 If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

 A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

 Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

 12. No Surrender of Others' Freedom.

 If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

 13. Use with the GNU Affero General Public License.

 Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.

 14. Revised Versions of this License.

 The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

 Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.

 If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

 Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

 15. Disclaimer of Warranty.

 THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

 16. Limitation of Liability.

 IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

 17. Interpretation of Sections 15 and 16.

 If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

 END OF TERMS AND CONDITIONS

 How to Apply These Terms to Your New Programs

 If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

 To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

 If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:

 <program> Copyright (C) <year> <name of author>
 This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
 This is free software, and you are welcome to redistribute it
 under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".

 You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.

 The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

pdftools.pdfposter-0.6.0/INSTALL

.. -*- mode: rst -*-

====================================
pdfposter Installation Instructions
====================================

:Author: Hartmut Goebel <h.goebel@crazy-compilers.com>
:Version: Version 0.6.0
:Copyright: 2008-2013 by Hartmut Goebel
:Licence: GNU Public Licence v3 (GPLv3)
:Homepage: http://pythonhosted.org/pdftools.pdfposter/

Requirements
~~~~~~~~~~~~~~~~~~~~

``Pdfposter`` requires

* Python 2.x (tested with 2.5, but other versions should work, too),
* `pyPdf <http://pybrary.net/pyPdf/>`_ > 1.10,
* setuptools for installation (see below).


Installation on Windows-Systems
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


Installation Requirements

``Pdfposter`` uses setuptools for installation. Thus you need
either

 * network access, so the install script will automatically download
 and install setuptools if they are not already installed

or

 * the correct version of setuptools preinstalled using the
 `EasyInstall installation instructions`__. Those instructions also
 have tips for dealing with firewalls as well as how to manually
 download and install setuptools.

__ http://peak.telecommunity.com/DevCenter/EasyInstall#installation-instructions

Installation

Install ``pdfposter`` by just running::

 python ./setup.py install

Custom Installation Locations

``pdfposter`` is just a single script (aka Python program). So you can
copy it where ever you want (maybe fixing the first line). But it's
easier to just use::

 # install to /usr/local/bin
 python ./setup.py install --prefix /usr/local

 # install to your Home directory (~/bin)
 python ./setup.py install --home ~

Please mind: This effects also the installation of pyPdf (and
setuptools) if they are not already installed.

For more information about Custom Installation Locations please refer
to the `Custom Installation Locations Instructions`__ before
installing ``pdfposter``.

__ http://peak.telecommunity.com/DevCenter/EasyInstall#custom-installation-locations

pdftools.pdfposter-0.6.0/examples/gen-examplepages.py

#!/usr/bin/env python
-*- coding: utf-8 -*-
#
Copyright 2013 by Elena Grandi <elena.valhalla@gmail.com>
Copyright 2008-2012 by Hartmut Goebel <h.goebel@crazy-compilers.com>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
#
"""
Generate example PDF documents for pdfposter.

This generates two PDF-files:
- a tall one (5.0 cm x 29,7 cm)
- a wide one (29.7 cm x 5.0 cm)

These pages are later used creating images for examples.
"""

__author__ = "Hartmut Goebel <h.goebel@crazy-compilers.com>"
__copyright__ = "Copyright 2008-2012 by Hartmut Goebel <h.goebel@crazy-compilers.com>"
__licence__ = "GNU General Public License version 3 (GPL v3)"

from reportlab.lib.units import mm
from reportlab.lib.colors import black
from reportlab.pdfgen.canvas import Canvas

def genTestFile(filename_tall, filename_wide):
 short_size = 50*mm
 long_size = 297*mm
 numbers = ['B', 'A', '9', '8', '7', '6', '5', '4', '3', '2', '1']
 margin = 10*mm

 #----------- generate the tall PDF -----------
 size = (short_size, long_size)
 step = (long_size - margin*2)/len(numbers)
 canv = Canvas(filename_tall, pagesize=size)
 canv.setFont("Helvetica", 72)
 canv.setStrokeColor(black)

 # draw the content
 for i, n in enumerate(numbers):
 canv.drawCentredString(short_size/2, step*i + margin + 4*mm, n)
 canv.rect(margin, margin, short_size - margin * 2,
 long_size - margin * 2, fill=0, stroke=1)

 # save the pdf file
 canv.showPage()
 canv.save()

 #----------- generate the wide PDF -----------
 size = (long_size, short_size)
 step = (long_size - margin*2)/len(numbers)
 numbers.reverse()
 canv = Canvas(filename_wide, pagesize=size)
 canv.setFont("Helvetica", 72)
 canv.setStrokeColor(black)

 # draw the contents
 for i, n in enumerate(numbers):
 canv.drawCentredString(step*i + margin + step/2, margin + 6*mm, n)
 canv.rect(margin, margin, long_size - margin * 2,
 short_size - margin * 2, fill=0, stroke=1)

 # save the pdf file
 canv.showPage()
 canv.save()

if __name__ == '__main__':
 import argparse
 parser = argparse.ArgumentParser()
 parser.add_argument('filename_tall',
 help='Name of tall output file')
 parser.add_argument('filename_wide',
 help='Name of wide output file')
 args = parser.parse_args()
 genTestFile(args.filename_tall, args.filename_wide)

pdftools.pdfposter-0.6.0/examples/testpage-wide.pdf

1 2 3 4 5 6 7 8 9 A B

pdftools.pdfposter-0.6.0/examples/testpage-tall.pdf

B
A
9
8
7
6
5
4
3
2
1

pdftools.pdfposter-0.6.0/README.txt

.. -*- mode: rst ; ispell-local-dictionary: "american" -*-

==========================
pdfposter
==========================

Scale and tile PDF images/pages to print on multiple pages.

:Author: Hartmut Goebel <h.goebel@crazy-compilers.com>
:Version: Version 0.6.0
:Copyright: 2008-2013 by Hartmut Goebel
:Licence: GNU Public Licence v3 (GPLv3)
:Homepage: http://pythonhosted.org/pdftools.pdfposter/

``Pdfposter`` can be used to create a large poster by building it from
multiple pages and/or printing it on large media. It expects as input a
PDF file, normally printing on a single page. The output is again a
PDF file, maybe containing multiple pages together building the
poster.
The input page will be scaled to obtain the desired size.

This is much like ``poster`` does for Postscript files, but working
with PDF. Since sometimes poster does not like your files converted
from PDF. :-) Indeed ``pdfposter`` was inspired by ``poster``.

For more information please refer to the manpage or visit
the `project homepage <http://pythonhosted.org/pdftools.pdfposter/>`_.

Requirements and Installation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

``Pdfposter`` requires

* `Python 2.x`__ or higher (tested with 2.5 and 2.6, but other
  versions should work, too, Python 3.x is *not* supported),
* `setuptools`__ for installation (see below), and
* `pyPdf`__ >= 1.11.

__ http://www.python.org/download/
__ http://pypi.python.org/pypi/setuptools
__ http://pybrary.net/pyPdf/


:Hints for installing on Windows: Following the links above you will
   find .msi and .exe-installers. Simply install them and continue
   with `installing pdfposter`_.

:Hints for installing on GNU/Linux: Most current GNU/Linux distributions
   provide packages for the requirements. Look for packages names like
   `python-setuptools` and `python-pypdf`. Simply install them and
   continue with `installing pdfposter`_.

:Hint for installing on other platforms: Many vendors provide Python.
   Please check your vendors software repository. Otherwise please
   download Python 2.6 (or any higer version from the 2.x series) from
   http://www.python.org/download/ and follow the installation
   instructions there.

   After installing Python, install `setuptools`__. You may want to
   read `More Hints on Installing setuptools`_ first.

__ http://pypi.python.org/pypi/setuptools

   Using setuptools, compiling and installing the remaining
   requirements is a piece of cake::

     # if the system has network access
     easy_install pyPdf

     # without network access download pyPdf
     # from http://pybrary.net/pyPdf/ and run
     easy_install pyPdf-*.zip


Installing pdfposter
---------------------------------

When you are reading this you most probably already downloaded and
unpacked `pdfposter`. Thus installing is as easy as running::

   python ./setup.py install

Otherwise you may install directly using setuptools/easy_install. If
your system has network access installing `pdfposter` is a
breeze::

     easy_install pdftools.pdfposter

Without network access download `pdfposter` from
http://pypi.python.org/pypi/pdfposter and run::

     easy_install pdftools.pdfposter-*.tar.gz


More Hints on Installing setuptools
------------------------------------

`pdfposter` uses setuptools for installation. Thus you need
either

  * network access, so the install script will automatically download
    and install setuptools if they are not already installed

or

  * the correct version of setuptools preinstalled using the
    `EasyInstall installation instructions`__. Those instructions also
    have tips for dealing with firewalls as well as how to manually
    download and install setuptools.

__ http://peak.telecommunity.com/DevCenter/EasyInstall#installation-instructions


Custom Installation Locations
------------------------------

``pdfposter`` is just a single script (aka Python program). So you can
copy it where ever you want (maybe fixing the first line). But it's
easier to just use::

   # install to /usr/local/bin
   python ./setup.py install --prefix /usr/local

   # install to your Home directory (~/bin)
   python ./setup.py install --home ~


Please mind: This effects also the installation of pyPdf (and
setuptools) if they are not already installed.

For more information about Custom Installation Locations please refer
to the `Custom Installation Locations Instructions`__ before
installing ``pdfposter``.

__ http://peak.telecommunity.com/DevCenter/EasyInstall#custom-installation-locations>







pdftools.pdfposter-0.6.0/pdftools/pdfposter/cmd.py

#!/usr/bin/env python
"""
pdftools.pdfposter.cmd - scale and tile PDF images/pages to print on multiple pages.
"""
#
# Copyright 2008-2013 by Hartmut Goebel <h.goebel@crazy-compilers.com>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#

__author__ = "Hartmut Goebel <h.goebel@crazy-compilers.com>"
__copyright__ = "Copyright 2008-2013 by Hartmut Goebel <h.goebel@crazy-compilers.com>"
__licence__ = "GNU General Public License version 3 (GPL v3)"

from . import main, __version__, DEFAULT_MEDIASIZE, papersizes, DecryptionError
import re
import pyPdf.utils

# pattern for parsing user textual box spec
pat_box = re.compile(r'''
     ( (?P<width>  (\d*\.)? \d+) x                 # width "x" height
       (?P<height> (\d*\.)? \d+) )?
     (?P<offset> \+                                # "+" offset_x "," offset_y
                 (?P<offset_x> \d+\.? | \d*\.\d+)
                 ,
                 (?P<offset_y> \d+\.? | \d*\.\d+) ) ?
     (?P<unit> [a-z][a-z0-9\-\\_]*)                # unit
     ''', re.X+re.I)

def __parse_box(option, value, parser, allow_offset=False):
    m = pat_box.match(value)
    if not m:
        raise parser.error("I don't understand your box specification %r for %s" % (value, option))
    res = m.groupdict()
    if not allow_offset and res['offset'] is not None:
        raise parser.error('Offset not allowed in box definition for %s' % option)
    # res['offset'] is only used for error checking, remove it
    del res['offset']

    # get meassures of unit
    unit = res['unit'].lower()
    if not papersizes.has_key(unit):
        unit = [name for name in papersizes.keys()
                if name.startswith(unit)]
        if len(unit) == 0:
            parser.error("I don't understand your papersize name %r for %s." % (res['unit'], option))
        elif len(unit) != 1:
            parser.error('Your papersize name %r for %s is not unique, give more chars.' % (res['unit'], option))
        unit = unit[0]
    unit_x, unit_y = papersizes[unit]
    res2 = {
        'width'   : float(res['width'] or 1) * unit_x,
        'height'  : float(res['height'] or 1) * unit_y,
        'offset_x': float(res['offset_x'] or 0) * unit_x,
        'offset_y': float(res['offset_y'] or 0) * unit_y,
        'unit': unit,
        'units_x': float(res['width'] or 1),
        'units_y': float(res['height'] or 1),
        }
    return res2

def _parse_box(option, opt, value, parser, allow_offset=False):
    res = __parse_box(option, value, parser, allow_offset=False)
    setattr(parser.values, option.dest, res)

def run():
    import optparse
    parser = optparse.OptionParser('%prog [options] InputFile OutputFile',
                                   version=__version__)
    parser.add_option('--help-media-names', action='store_true',
                      help='List available media and distance names')
    parser.add_option('-v', '--verbose', action='count', default=0,
                      help='Be verbose. Tell about scaling, rotation and number of pages. Can be used more than once to increase the verbosity. ')
    parser.add_option('-n', '--dry-run', action='store_true',
                      help='Show what would have been done, but do not generate files.')

    parser.add_option('-A', '--art-box',
                      action='store_true', dest='use_ArtBox',
                      help='Use the content area defined by the ArtBox '
                      '(default: use the area defined by the TrimBox)')

    group = parser.add_option_group('Define Target')
    group.add_option('-m', '--media-size',
                     default=__parse_box('-m', DEFAULT_MEDIASIZE, parser),
                     action='callback', type='string', callback=_parse_box, 
                     help='Specify the size of the output media size (default: %s)' % DEFAULT_MEDIASIZE)
    group.add_option('-p', '--poster-size',
                     action='callback', type='string', callback=_parse_box, 
                     help='Specify the poster size (defaults to media size). ')
    group.add_option('-s', '--scale', type=float,
                     help='Specify a linear scaling factor to produce the poster.')

    opts, args = parser.parse_args()

    if opts.help_media_names:
        names = papersizes.keys()
        names.sort()
        parser.print_usage()
        print parser.formatter.format_heading('Available media and distance names')
        parser.formatter.indent()
        print parser.formatter.format_description(' '.join(names))
        raise SystemExit(0)

    if len(args) != 2:
        parser.error('requires both input and output filename')
    if opts.scale is not None and opts.poster_size is not None:
        parser.error('Only one of -p/--poster-size and -s/--scale may be given at a time.')
    if not opts.poster_size:
        opts.poster_size = opts.media_size.copy()
    if opts.scale is not None:
        opts.poster_size = None
        if opts.scale < 0.01:
            parser.error("Scale value is much to small: %s" % opts.scale)
        elif opts.scale > 1.0e6:
            parser.error("Scale value is much to big: %s" % opts.scale)

    try:
        main(opts, *args)
    except DecryptionError, e:
        raise SystemExit(str(e))
    except pyPdf.utils.PdfReadError:
        parser.error('The input-file is either currupt or no PDF at all.')


if __name__ == '__main__':
    run()







pdftools.pdfposter-0.6.0/pdftools/pdfposter/__init__.py

#!/usr/bin/env python
"""
pdftools.pdfposter - scale and tile PDF images/pages to print on multiple pages.
"""
#
# Copyright 2008-2013 by Hartmut Goebel <h.goebel@crazy-compilers.com>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#

__author__ = "Hartmut Goebel <h.goebel@crazy-compilers.com>"
__copyright__ = "Copyright 2008-2013 by Hartmut Goebel <h.goebel@crazy-compilers.com>"
__licence__ = "GNU General Public License version 3 (GPL v3)"
__version__ = "0.6.0"

# ignore some warnings for pyPDF < 1.13
import warnings
warnings.filterwarnings('ignore', "the sets module is deprecated")
warnings.filterwarnings('ignore', "the md5 module is deprecated")

from pyPdf.pdf import PdfFileWriter, PdfFileReader, PageObject, getRectangle, \
     ArrayObject, ContentStream, NameObject, FloatObject, RectangleObject

import logging
from logging import log
import math

DEFAULT_MEDIASIZE = 'a4'

mm = 72 / 25.4

# Taken from poster.c
papersizes = {
    'pt'  : (1, 1),
    'inch': (72, 72),
    'ft'  : (864, 864), # 12 inch
    'mm'  : (mm, mm),
    'cm'  : (10 *mm, 10 *mm),
    'meter':(1000* mm, 1000* mm),

    # American page sizes (taken from psposter.c)
    "monarch"  : (279, 540),
    "statement": (396, 612),
    "executive": (540, 720),
    "quarto"   : (610, 780),
    "letter"   : (612, 792),
    "folio"    : (612, 936),
    "legal"    : (612, 1008),
    "tabloid"  : (792, 1224),
    "ledger"   : (792, 1224),

    # ISO page sizes (taken from psposter.c)
    "a0" : (2384, 3370),
    "a1" : (1684, 2384),
    "a2" : (1191, 1684),
    "a3" : (842, 1191),
    "a4" : (595, 842),
    "a5" : (420, 595),
    "a6" : (298, 420),
    "a7" : (210, 298),
    "a8" : (147, 210),
    "a9" : (105, 147),
    "a10": (74, 105),

    "dinlang"   : (281, 595), # 1/3 a4
    "envdinlang": (312, 624), # envelobe for din-lang

    "b0" : (2835, 4008),
    "b1" : (2004, 2835),
    "b2" : (1417, 2004),
    "b3" : (1001, 1417),
    "b4" : (709, 1001),
    "b5" : (499, 709),
    "b6" : (354, 499),
    "b7" : (249, 354),
    "b8" : (176, 249),
    "b9" : (125, 176),
    "b10": (88, 125),

    "c4" : (649, 918),
    "c5" : (459, 649),
    "c6" : (323, 459),

    # Japanese page sizes (taken from psposter.c)
    "jb0" : (2920, 4127),
    "jb1" : (2064, 2920),
    "jb2" : (1460, 2064),
    "jb3" : (1032, 1460),
    "jb4" : (729, 1032),
    "jb5" : (516, 729),
    "jb6" : (363, 516),
    "jb7" : (258, 363),
    "jb8" : (181, 258),
    "jb9" : (128, 181),
    "jb10": (91, 128),

    "comm10": (298, 684),
    "com10" : (298, 684),
    "env10" : (298, 684),
    }

class DecryptionError(ValueError): pass
    

PAGE_BOXES = ("/MediaBox", "/CropBox", "/BleedBox", "/TrimBox", "/ArtBox")

def rectangle2box(pdfbox):
    return {
        'width'   : pdfbox.getUpperRight_x()-pdfbox.getLowerLeft_x(),
        'height'  : pdfbox.getUpperRight_y()-pdfbox.getLowerLeft_y(),
        'offset_x': pdfbox.getLowerLeft_x(),
        'offset_y': pdfbox.getLowerLeft_y(),
        # the following are unused, but need to be set to make
        # `rotate_box()` work
        'units_x' : None,
        'units_y' : None,
        }

def rotate_box(box):
    for a,b in (
        ('width', 'height'),
        ('offset_x', 'offset_y'),
        ('units_x', 'units_y')):
        box[a], box[b] = box[b], box[a]

def rotate2portrait(box, which):
    'if box is landscape spec, rotate to portrait'
    if (  box['width' ]-box['offset_x'] 
        > box['height']-box['offset_y']):
        rotate_box(box)
        log(18, 'Rotating %s specs to portrait format', which)
        return True

def decide_num_pages(inbox, mediabox, posterbox, scale=None):
    """decide on number of pages"""
    # avoid changing original posterbox when handling multiple pages
    # (if --scale, posterbox is None)
    posterbox = posterbox and posterbox.copy()
    cutmargin   = {'x': 0, 'y': 0} # todo
    whitemargin = {'x': 0, 'y': 0} # todo
    # media and image sizes (inbox) are fixed already
    # available drawing area per sheet
    drawable_x = mediabox['width' ] - 2*cutmargin['x']
    drawable_y = mediabox['height'] - 2*cutmargin['y']

    rotate = False

    inbox_x = float(inbox['width' ])
    inbox_y = float(inbox['height'])
    log(17, 'input  dimensions: %.2f %.2f (trimbox of input page)',
            inbox_x, inbox_y)

    if not scale:
        # user did not specify scale factor, calculate from output size
        # todo: fix assuming posterbox offset = 0,0
        log(17, 'output dimensions: %.2f %.2f (poster size)',
            posterbox['width'], posterbox['height'])

        # ensure poster spec are portrait
        if rotate2portrait(posterbox, 'poster'):
            rotate = rotate != True # xor

        # if the input page has landscape format rotate the
        # poster spec to landscape, too
        if inbox_x > inbox_y:
            log(18, 'Rotating poster specs since input page is landscape')
            rotate = rotate != True # xor
            rotate_box(posterbox)
            log(18, 'rotated output dimensions: %.2f %.2f (poster size)',
                posterbox['width'], posterbox['height'])

        scale = min(posterbox['width' ] / inbox_x,
                    posterbox['height'] / inbox_y)
        log(18, 'Calculated page scaling factor: %f', scale)

    # use round() to avoid floating point roundup errors
    size_x = round(inbox_x*scale - whitemargin['x'], 4)
    size_y = round(inbox_y*scale - whitemargin['y'], 4)
    log(17, 'output dimensions: %.2f %.2f (calculated)', size_x, size_y)

    # num pages without rotation
    nx0 = int(math.ceil( size_x / drawable_x))
    ny0 = int(math.ceil( size_y / drawable_y))
    # num pages with rotation
    nx1 = int(math.ceil( size_x / drawable_y))
    ny1 = int(math.ceil( size_y / drawable_x))

    log(17, 'Pages w/o rotation %s x %s' , nx0, ny0)
    log(17, 'Pages w/  rotation %s x %s' , nx1, ny1)

    # Decide for rotation to get the minimum page count.
    # (Rotation is considered as media versus input page, which is
    # totally independent of the portrait or landscape style of the
    # final poster.)
    rotate = (rotate and (nx0*ny0) == (nx1*ny1)) or (nx0*ny0) > (nx1*ny1)
    log(17, 'Decided for rotation: %s', rotate and 'yes' or 'no')

    if rotate:
        ncols = nx1
        nrows = ny1
    else:
        ncols = nx0
        nrows = ny0

    log(19, "Deciding for %d column%s and %d row%s of %s pages.",
            ncols, (ncols==1) and "s" or "",
            nrows, (nrows==1) and "s" or "",
            rotate and "landscape" or "portrait")
    return ncols, nrows, scale, rotate


def copyPage(page):
    from pyPdf.pdf import RectangleObject, NameObject
    newpage = PageObject(page.pdf)
    newpage.update(page)
    # Copy Rectangles to be manipulatable
    for attr in PAGE_BOXES:
        if page.has_key(attr):
            newpage[NameObject(attr)] = RectangleObject(list(page[attr]))
    return newpage

def _clip_pdf_page(page, x, y, width, height):
    content = ContentStream(page["/Contents"].getObject(), page.pdf)
    content.operations[:0] = [
        ([], 'q'), # save graphic state
        ([], 'n'), # cancel path w/ filling or stroking
        (RectangleObject((x, y, width, height)), 're'), # rectangle path
        ([], 'W*'), # clip
        ]
    content.operations.append([[], "Q"]) # restore graphic state
    page[NameObject('/Contents')] = content


def _scale_pdf_page(page, factor):
    for boxname in PAGE_BOXES:
        # skip if real box does not exits (avoid fallback to other boxes)
        if not page.get(boxname):
            continue
        box = getRectangle(page, boxname, None)
        box.lowerLeft  = [float(i) * factor for i in box.lowerLeft ]
        box.upperRight = [float(i) * factor for i in box.upperRight]
        #print boxname, type(box), box
    # put transformation matrix in front of page content
    content = ContentStream(page["/Contents"].getObject(), page.pdf)
    content.operations.insert(0, [[], '%f 0 0 %f 0 0 cm' %(factor,factor)] )
    page[NameObject('/Contents')] = content


def posterize(outpdf, page, mediabox, posterbox, scale, use_ArtBox=False):
    """
    page: input page
    mediabox : size secs of the media to print on
    posterbox: size secs of the resulting poster
    scale: scale factor (to be used instead of posterbox)
    """
    if use_ArtBox:
        inbox = rectangle2box(page.artBox)
    else:
        inbox = rectangle2box(page.trimBox)
    _clip_pdf_page(page, inbox['offset_x'], inbox['offset_y'],
                   inbox['width'], inbox['height'])
    ncols, nrows, scale, rotate = decide_num_pages(inbox, mediabox,
                                                   posterbox, scale)
    mediabox = mediabox.copy()
    _scale_pdf_page(page, scale)
    if rotate:
        page.rotateClockwise(90)
        rotate_box(inbox)
        rotate_box(mediabox)
    # area to put on each page (allows for overlay of margin)
    h_step = mediabox['width']  - mediabox['offset_x']
    v_step = mediabox['height'] - mediabox['offset_y']
    
    if use_ArtBox:
        trimbox = rectangle2box(page.artBox)
    else:
        trimbox = rectangle2box(page.trimBox)
    h_pos = float(trimbox['offset_x'])
    h_max, v_max = float(trimbox['width']), float(trimbox['height'])
    for col in range(ncols):
        v_pos = float(trimbox['offset_y']) + (nrows-1) * v_step
        for row in range(nrows):
            log(17, 'Creating page with offset: %.2f %.2f' % (h_pos, v_pos))
            newpage = copyPage(page)
            # todo: if remaining area is smaller than mediaBox, add a
            # transparent fill box behind, so the real content is in
            # the lower left corner
            newpage.mediaBox = RectangleObject((h_pos, v_pos,
                                                h_pos + h_step,
                                                v_pos + v_step))
            newpage.trimBox = RectangleObject((h_pos, v_pos,
                                               min(h_max, h_pos + h_step),
                                               min(v_max, v_pos + v_step)))
            newpage.artBox = newpage.trimBox
            outpdf.addPage(newpage)
            v_pos -= v_step
        h_pos += h_step

def password_hook():
    import getpass
    return getpass.getpass()

def main(opts, infilename, outfilename, password_hook=password_hook):
    logging.basicConfig(level=20-opts.verbose, format="%(message)s")
    outpdf = PdfFileWriter()
    inpdf = PdfFileReader(open(infilename, 'rb'))

    if inpdf.isEncrypted:
        log(16, 'File is encrypted')
        # try empty password first
        if not inpdf.decrypt(''):
            if not inpdf.decrypt(password_hook()):
                raise DecryptionError("Can't decrypt PDF. Wrong Password?")

    log(18, 'Mediasize : %(units_x)sx%(units_y)s %(unit)s' % opts.media_size)
    log(17, '            %(width).2f %(height).2f dots' % opts.media_size)
    if opts.scale:
        log(18, 'Scaling by: %f' % opts.scale)
    else:
        log(18, 'Postersize: %(units_x)sx%(units_y)s %(unit)s' % opts.poster_size)
        log(17, '            %(width).2f %(height).2f dots' % opts.poster_size)

    for i, page in enumerate(inpdf.pages):
        log(19, '---- processing page %i -----', i+1)
        posterize(outpdf, page, opts.media_size, opts.poster_size, opts.scale,
                  opts.use_ArtBox)
    if not opts.dry_run:
        outpdf.write(open(outfilename, 'wb'))







pdftools.pdfposter-0.6.0/pdftools/i18n.py

# i18n.py - internationalization support for mercurial
#
# Copyright 2005, 2006 Matt Mackall <mpm@selenic.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.

import encoding
import gettext, sys, os

# modelled after templater.templatepath:
if hasattr(sys, 'frozen'):
    module = sys.executable
else:
    module = __file__

base = os.path.dirname(module)
for dir in ('.', '..'):
    localedir = os.path.join(base, dir, 'locale')
    if os.path.isdir(localedir):
        break

t = gettext.translation('hg', localedir, fallback=True)

def gettext(message):
    """Translate message.

    The message is looked up in the catalog to get a Unicode string,
    which is encoded in the local encoding before being returned.

    Important: message is restricted to characters in the encoding
    given by sys.getdefaultencoding() which is most likely 'ascii'.
    """
    # If message is None, t.ugettext will return u'None' as the
    # translation whereas our callers expect us to return None.
    if message is None:
        return message

    paragraphs = message.split('\n\n')
    # Be careful not to translate the empty string -- it holds the
    # meta data of the .po file.
    u = u'\n\n'.join([p and t.ugettext(p) or '' for p in paragraphs])
    try:
        # encoding.tolocal cannot be used since it will first try to
        # decode the Unicode string. Calling u.decode(enc) really
        # means u.encode(sys.getdefaultencoding()).decode(enc). Since
        # the Python encoding defaults to 'ascii', this fails if the
        # translated string use non-ASCII characters.
        return u.encode(encoding.encoding, "replace")
    except LookupError:
        # An unknown encoding results in a LookupError.
        return message

if 'HGPLAIN' in os.environ:
    _ = lambda message: message
else:
    _ = gettext








pdftools.pdfposter-0.6.0/pdftools/__init__.py

try:
    __import__('pkg_resources').declare_namespace(__name__)
except:
    # bootstrapping
    pass







pdftools.pdfposter-0.6.0/MANIFEST.in

include docs/*.1 docs/*.html
include COPYING
include README.txt
exclude projectlogo.*
exclude .gitignore .gitattributes
global-exclude SConstruct SConscript







pdftools.pdfposter-0.6.0/pdftools.pdfposter.egg-info/top_level.txt

pdftools







pdftools.pdfposter-0.6.0/pdftools.pdfposter.egg-info/entry_points.txt

[console_scripts]
pdfposter = pdftools.pdfposter.cmd:run








pdftools.pdfposter-0.6.0/pdftools.pdfposter.egg-info/namespace_packages.txt

pdftools







pdftools.pdfposter-0.6.0/pdftools.pdfposter.egg-info/dependency_links.txt









pdftools.pdfposter-0.6.0/pdftools.pdfposter.egg-info/PKG-INFO

Metadata-Version: 1.1
Name: pdftools.pdfposter
Version: 0.6.0
Summary: Scale and tile PDF images/pages to print on multiple pages.
Home-page: http://pythonhosted.org/pdftools.pdfposter/
Author: Hartmut Goebel
Author-email: h.goebel@crazy-compilers.com
License: GPL 3.0
Download-URL: http://pypi.python.org/pypi/pdftools.pdfposter/
Description: 
        ``Pdfposter`` can be used to create a large poster by building it from
        multple pages and/or printing it on large media. It expects as input a
        PDF file, normally printing on a single page. The output is again a
        PDF file, maybe containing multiple pages together building the
        poster.
        The input page will be scaled to obtain the desired size.
        
        This is much like ``poster`` does for Postscript files, but working
        with PDF. Since sometimes poster does not like your files converted
        from PDF. :-) Indeed ``pdfposter`` was inspired by ``poster``.
        
        For more information please refere to the manpage or visit
        the `project homepage <http://pythonhosted.org/pdftools.pdfposter/>`_.
        
Keywords: pdf poster
Platform: UNKNOWN
Classifier: Development Status :: 5 - Production/Stable
Classifier: Environment :: Console
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: End Users/Desktop
Classifier: Intended Audience :: System Administrators
Classifier: License :: OSI Approved :: GNU General Public License (GPL)
Classifier: Natural Language :: English
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python
Classifier: Topic :: Printing
Classifier: Topic :: Utilities







pdftools.pdfposter-0.6.0/pdftools.pdfposter.egg-info/requires.txt

pyPdf>1.10






pdftools.pdfposter-0.6.0/pdftools.pdfposter.egg-info/zip-safe









pdftools.pdfposter-0.6.0/pdftools.pdfposter.egg-info/SOURCES.txt

INSTALL
LICENSE-GPLv3.txt
MANIFEST.in
README.txt
ez_setup.py
pdfposter.rst
setup.cfg
setup.py
docs/Development.rst
docs/Examples.rst
docs/Frequently Asked Questions.rst
docs/Makefile
docs/conf.py
docs/index.rst
docs/pdfposter.1
docs/pdfposter.html
docs/images/poster-tall-1x2a4.png
docs/images/poster-tall-2x1a4.png
docs/images/poster-wide-1x2a4.png
docs/images/poster-wide-2x1a4.png
docs/images/testpage-tall.preview.png
docs/images/testpage-wide.preview.png
examples/gen-examplepages.py
examples/testpage-tall.pdf
examples/testpage-wide.pdf
pdftools/__init__.py
pdftools/i18n.py
pdftools.pdfposter.egg-info/PKG-INFO
pdftools.pdfposter.egg-info/SOURCES.txt
pdftools.pdfposter.egg-info/dependency_links.txt
pdftools.pdfposter.egg-info/entry_points.txt
pdftools.pdfposter.egg-info/namespace_packages.txt
pdftools.pdfposter.egg-info/requires.txt
pdftools.pdfposter.egg-info/top_level.txt
pdftools.pdfposter.egg-info/zip-safe
pdftools/pdfposter/__init__.py
pdftools/pdfposter/cmd.py
test/allboxes-noboxes.pdf
test/allboxes.pdf
test/gen-allboxespage.py
test/gen-chessboard.py
test/gen-testpages.py
test/gen-trimmedpage.py
test/test_box.py
test/testpages-a4.pdf
test/trimmedpage.pdf





