
BAMG: Bidimensional Anisotropic Mesh Generator

Frédéric Hecht
∗

draft version v1.00 decembre 2006

The software bamg is a Bidimensional Anisotropic Mesh Generator, It a part of FreeFem++
software www.freefem.org/ff++

1 Outline of the commands

This software is activated by the command bamg or by the bamg-g command for graphical
and debugging version.

This software can

• create a mesh from a geometry.

-- input file with -g filename (file type DB mesh).

-- output file arguments -oxxxx filename where xxxx is the type of output file
(see point 1.4 for more details).

-- smoothing, quad, utility and other parameters

In addition, metric specification may be prescribed with the help of -M filename ar-
gument (file type Metric).

All the options are described below.

• adapt a mesh from a background mesh using a metric file, or solution file

-- input files -b filename where the suffixe of the file define the type of the file
.amdba, .am fmt, .am, .ftq, .nopo and otherwise the file is a BD mesh file.

-- -M filename (file type Metric)or -MBB filename or -Mbb filename

(solution file type BB or bb)

-- metric control parameters, -err val, -errg val ,

-- output file arguments reqired

-- interpolation, smoothing, quad, utility parameter. and other parameter

• to do smoothing, to make quadrilaterals, to split internal edge with 2 boundary vertices,
... an existing mesh (in this case the metric is use to change the definition of the element’s
quality).

∗University Pierre et Marie Curie, LJLL, BC187 4 Place Jussieu 75252 PARIS cedex 05 FRANCE, email:
Frederic.Hecht@upmc.fr, http://www-rocq.inria.fr/Frederic.Hecht

1

www.freefem.org/ff++

-- input files -r filename (file type DB mesh).

-- -M filename (file type Metric).

-- output file -o filename (file type DB mesh).

-- some other parameter:

– -thetaquad val To create quad with 2 triangles

– -2 To create the submesh with mesh size h = h/2

– -2q To split all triangles in 3 quad. and to split all quad. in 4 quad.

– -NbSmooth ival To change the number of smoothing iteration (3 by default
if the metric field is set with arguments : -M or -Mbb, 0 otherwise.

– ...

• to just construct just a metric file, if you have an other mesher

-- input files -r filename (file type DB mesh).

-- -Mbb filename or -MBB filename

-- + all the arguments of the metric construction

-- output file -oM filename (file type Metric)

• to just do the P 1 interpolation of the solution

-- input files -r filename (file type DB mesh).

-- -rBB filename or -rbb filename

-- output file -wBB filename or -wbb filename

Others options are described below.

2 Detailed list of arguments

2.1 Input Mesh (the three arguments are exclusive)

-g filename Set the geometry for mesh generation (file type DB mesh).

-b filename Set the background mesh for mesh adaption, the suffixe of the file
name set the type of the inputs file .amdba, .am, .am fmt, .ftq,

.msh, .nopo give the type of the file otherwise the type is (file type
DB mesh).

-r filename Set the mesh for mesh transformation (require -M or -Mbb argu-
ments). Remark: the geometry is the background geometry. If
the background geometry is not define by a BD mesh, then we
reconstruct a geometry from the boundary mesh and the thetamax
angle.

-thetamax (float) to define the AngleOfCornerBound in degree
which say if you have a corner or not (cf. 4.1), if the geometry is
reconstruct, ie. the input mesh have no geometrical definition.

2.2 Metric Definition (or mesh size definition)

2

-M filename Set the metric which is defined on the background mesh or on the
geometry. (see description of geometry data structure). (file type
Metric)

A metric field can be constructed from a solution defined on the background mesh.
Solution (or solution components) are supposed to be of continuous P 1 Lagrange type.

This option is activated by

-Mbb filename (where the file is of type bb, see description of data structure bb).

-MBB filename (where the file is of type BB, see description of data structure BB).

When more of one argument -M and -Mbb , -MBB are present, the resulting metric is
the intersection of the given and constructed metrics.

In addition, some parameters may act on the metric.

-coef val Set the value of a multiplicative coefficient on the mesh size.

val is of type double precision and default value is 1.0

-ratio val Set the ratio for a prescribed smoothing on the metric. If val is 0
(default value) or less than 1.1 no smoothing on the metric is done.

If val > 1.1 the speed of mesh size variation is bounded by log(val).
Remark: As val is closer to 1, the number of vertices generated
increases. This may be useful to control the thickness of refined
regions near shocks or boundary layers.

-hmin val Set the value of the minimal edge size. (val is of type double
precision and default value is related to the size of the domain to
be meshed and the precision of mesh generator).

-hmax val Set the value of the maximal edge size. (val is of type double
precision and default value is the diameter of the domain to be
meshed)

-errg val Set the value of the relative error on geometry, by default this error
is 0.1, and in any case this value is geater than 1/

√
2. Remark that

mesh size created by this option can be smaller than the -hmin

argument due to geometrical constraint.

When we construct the metric (-Mbb argument or -MBB argument) , additional param-
eters can be used.

The metric is constructed from the Hessian H of the solution η read. If we read more
than one solution, the intersection of all metric associated to each solution is realized
to get the final metric.

The parameters err, coef, CutOff present in formula (1) and (2) are prescribed via
-err, -coef, -CutOff arguments respectively.

-err val Set the level of the P 1 interpolation error. (The present val pa-
rameter is a double precision parameter and the default value for
err is 10−2.)

3

-iso Enforce the metric to be isotropic

-aniso The metric may be of anisotropic type (default case).

-RelError The metric is evaluated using the criterium of equirepartion of rel-
ative error. In this case the metric is defined by

M =

(

1

err coef2

|H|
max(CutOff, |η|)

)p

(1)

-AbsError The metric is evaluated using the criterium of equidistribution er-
ror. In this case the metric is define by

M =

(

1

err coef2

|H
sup(η) − inf (η)

)p

. (2)

-CutOff val Set the limit value of the relative error evaluation (parameter is
double precision parameter and default value for CutOff is 10−5).

-power val Set the power parameter p in metric construction in the equations
1 and 2, the value is 1 by default.

-NbJacobi ival Set the number of iterations in a smoothing procedure during the
metric construction, 0 imply no smoothing. (ival is an integer
parameter, with default value is 1).

-maxsubdiv val Change the metric such that the maximal subdivision of a back-
ground’s edge is bound by the val number (alway limited by 10).

-anisomax val Set the bound of mesh anisotropy with respect to minimal hMin

mesh size in all direction so the maximal hMax mesh size in all
direction is bound by val×hMin.

2.3 Smoothing, quad, and Utility Parameter

-NbSmooth ival Set the number of iterations of the smoothing procedure, (ival =
3 by default).

-omega val Set the relaxation parameter of the smoothing procedure, (val =
1.8 by default).

-splitpbedge Split in two all internal edges with two boundary vertices (cf. fig. 3).

-nosplitpbedge Don’t split internal edges with two boundary vertices, default case
(cf. fig. 2).

-thetaquad val To create quad with 2 triangles,if the 4 angles of a quad are in
[val, 180 − val].

-2 To create the submesh with mesh size h = h/2, use with -coef 2

to get the right mesh size

-2q To split all triangles in 3 quad. and to split all quad, use with
-coef 2 to get the right mesh size

2.4 Output Meshes (always required in case of mesh generation)

The generated mesh(es) are written in file(s) where the output mesh files is defined by

4

• -o filename Create a (file type DB mesh).

• -oamdba filename Create a amdba file.

• -oftq filename Create a ftq file.

• -omsh filename Create a msh file (FreeFem3 file).

• -oam fmt filename Create a am fmt file.

• -oam filename Create a am file.

• -onopo filename Create a nopo file (link with Modulef library).

-o mfilename Set the name of the output file (file type DB mesh).

In addition, for compatibility with existing applications which use other data structures
for describing input meshes, the following options are provided.

-oamdba filename The data describing the generated mesh are stored in the file
filename which is of type amdba (see description of such structure
below).

-oam fmt filename The data describing the generated mesh are stored in the file
filename which is of type am fmt (see description of such struc-
ture below).

2.5 Interpolation Options

In the adaption process, a solution has been computed with the background mesh.
In order to transfer the solution (of the problem under consideration) on the new
generated mesh, an interpolation of old solution is necessary. This tranferred solution
may be a good initial guess for the solution on the new mesh. This interpolation is
carried out in a P 1 Lagrange context.

-rbb filename specify the solution to be interpolated on the new mesh. (the file
is of type bb) and the default file is the same as the solution file
for the metric construction (see -Mbb arguments)

-wbb filename specify the name of the file where the interpolated solution is stored.
(file is of type bb)

2.6 Other Parameters

-v ival Set the level of printing (verbosity , which can be chosen between
0 and 10 default value is 1).

-nbv ival or -nbs ival Set the maximal number of vertices generated by
the mesh generator (the ival is an integer and the default value is
50 000)

Remark: you can put all this arguments in a file: DATA bamg these option is useful on
MacIntosh because we have not other way to pass easily arguments to a program.

5

3 Examples

3.1 Creation of Mesh from a Geometry

Only two arguments are required:

-g gfilename which describe the geometry is DB Mesh format.

-o filename output file which will contain the created mesh in DB Mesh format.

3.1.1 Example Square] − 1, 1[2 with Mesh Size 0.666 at Vertices

The gfilename (square g.msh) contents

MeshVersionFormatted 0

Dimension 2

Vertices 4

-1 -1 1

1 -1 2

1 1 3

-1 1 4

Edges 4

1 2 1

2 3 1

3 4 2

4 1 2

hVertices

0.666 0.666 0.666 0.666

The Unix command is

bamg -o square_g.msh -o square_0.msh

The result mesh is show in Fig. 1 and the output is:

--- Construction of a mesh from the geometry : square_g.msh

with less than 50000 vertices, write on square_0.msh

Cpu for read the geometry 0s

-- Triangles::NewPoints Nb sommets = 17 Nb triangles = 20

NbSwap final = 0 Nb Total Of Swap = 13

Cpu for meshing 0.11s

and the create file square 0.msh content:

MeshVersionFormatted 0

Dimension

2

Identifier

"G=square_g.msh, Date: 97/06/26 11:33 55s"

6

Geometry

"square_g.msh"

Vertices

17

-1 -1 1

1 -1 2

1 1 3

-1 1 4

-0.33333337307 -1 1

0.33333325386 -1 1

1 -0.33333337307 1

1 0.33333325386 1

0.33333337307 1 2

-0.33333325386 1 2

-1 0.33333337307 2

-1 -0.33333325386 2

0.111111083171 -0.333333333333 0

-0.111111085034 0.333333333333 0

-0.444444458414 -0.333333294218 0

0.555555540654 -4.00468707085e-08 0

0.444444456552 0.499999979045 0

Edges

12

1 5 1

5 6 1

6 2 1

2 7 1

7 8 1

8 3 1

3 9 2

9 10 2

10 4 2

4 11 2

11 12 2

12 1 2

Triangles

20

12 15 11 1

13 5 6 1

4 11 10 1

1 5 15 1

16 7 8 1

14 10 11 1

6 2 7 1

14 9 10 1

15 12 1 1

3 9 17 1

5 13 15 1

6 7 13 1

7

16 14 13 1

17 9 14 1

14 15 13 1

14 11 15 1

7 16 13 1

8 3 17 1

16 17 14 1

16 8 17 1

SubDomainFromMesh

1

3 1 1 1

VertexOnGeometricVertex

4

1 1

2 2

3 3

4 4

VertexOnGeometricEdge

8

5 1 0.333333308498

6 1 0.666666646798

7 2 0.333333308498

8 2 0.666666646798

9 3 0.333333308498

10 3 0.666666646798

11 4 0.333333308498

12 4 0.666666646798

EdgeOnGeometricEdge

12

1 1

2 1

3 1

4 2

5 2

6 2

7 3

8 3

9 3

10 4

11 4

12 4

End

8

Figure 1: The mesh of square] − 1, 1[2 with mesh size 0.666 at each vertices.

Figure 2: The mesh of square]−1, 1[2 with
a refinement and with the default option
-nosplitpbedge (see Page 2).

Figure 3: The mesh of square] − 1, 1[2

with a refinement and with the option
-splitpbedge (see Page 2).

9

3.1.2 Example Square] − 1, 1[2 with a Refinement

Taken from the previous example, we want to have a refinement with mesh size of about
h = 0.001 in the neighborhood of (0, 0). This vertex has to be prescribed in the geometry file.

The gfilename (square raf g.msh) contents

MeshVersionFormatted 0

Dimension 2

Vertices 5

-1 -1 1

1 -1 2

1 1 3

-1 1 4

0 0 0

Edges 4

1 2 1

2 3 1

3 4 2

4 1 2

hVertices

0.666 0.666 0.666 0.666 0.01

if you do not say that the vertex number 5 is required

the mesher lost this information so no refinement

around the vertex (0.,0.) is done

RequiredVertices 1

5

The two Unix command are
bamg -o square_raf_g.msh -o square_raf.msh (Fig. 2)
bamg -splitpbedge -o square_raf_g.msh -o square_raf.msh (Fig. 3)

Figure 4: The mesh of the unit
circle defined from an octagon,
AngleOfCornerBound > 45◦

Figure 5: The mesh of an octagon,
AngleOfCornerBound < 45◦

3.1.3 Example of a Circle

The gfilename (circle g.msh) contents

10

MeshVersionFormatted 0

AngleOfCornerBound 46

Dimension 2

Vertices 8

1 0 1

.7071067811865476 .7071067811865476 1

0 1 1

-.7071067811865476 .7071067811865476 1

-1 0 1

-.7071067811865476 -.7071067811865476 1

0 -1 1

.7071067811865476 -.7071067811865476 1

Edges 8

1 2 1

2 3 1

3 4 1

4 5 1

5 6 1

6 7 1

7 8 1

8 1 1

hVertices

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

The Unix command is
bamg -o circle_g.msh -o circle_0.msh

If you change the value of AngleOfCornerBound from 46 to 44, in the file circle g.msh,
you obtain the mesh of an octagon (see Fig. 5), because the angle of the consecutive normal
on octagone is 45◦ and if you set the MaximalAngleOfCorner to a number less than 45◦, then
the software find eight corners, otherwise it don’t find any corner (see Fig. 4) .

3.2 Mesh adaption loop to minimize the interpolation error

let be f1 and f2 two given fonction, the problem is to find the coarsed mesh such that the
error L∞ of the interpolation for the 2 fonctions, is bounded with ε. The two error associated
to two founctions are denote by ε1 and ε2 .

The example dotest1.pl in directory examples/test is a perl script to solve this prob-
lem.

In this example the 2 fonctions are:

f1 = (10 ∗ x3 + y3) + atan2(0.001, (sin(5 ∗ y) − 2 ∗ x)),

f2 = (10 ∗ y3 + x3) + atan2(0.01, (sin(5 ∗ x) − 2 ∗ y)).

and the domain is unit circle.
The first coefficient in atan2 function modelise the thickness of a boundary layer. In this

case we do 20 iterations and the constant parameters of bamg are:
-AbsError -NoRescaling -NbJacobi 2 -NbSmooth 5 -hmax 2 -hmin 0.0000005

-ratio 0 -nbv 100000 -v 4 -err 0.05 -errg 0.01

11

You can see on figures 6, 7, 8, 9 the convergence of the process. This was acheved near
the iteration 11, and also the converge is more faster on ε2 rather ε1. This is normal because
the thickness of a boundary layer is an order 10 beetwen f1 and f2.

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 2 4 6 8 10 12 14 16 18 20

nbv

Figure 6: Nb of vertices versus iter-
ation

0
500

1000
1500
2000
2500
3000
3500
4000

0 2 4 6 8 10 12 14 16 18 20

err2

Figure 7: Nb of traingles versus it-
eration

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4

0 2 4 6 8 10 12 14 16 18 20

err1

Figure 8: ε1 versus iteration

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12 14 16 18 20

err2

Figure 9: ε2 versus iteration

Enter ? for help Enter ? for help Enter ? for help

0, ε =2.20 2.35, 8T 9V 1, ε =2.33 2.22, 72T 48V 2, ε =2.09 1.89, 337T 192V

12

Enter ? for help Enter ? for help Enter ? for help

3, ε =2.05 1.78, 780T 420V 4, ε =2.03 1.55, 1300T 681V 5, ε =1.95 0.97, 1867T 966V

Enter ? for help Enter ? for help Enter ? for help

6, ε =1.84 0.69, 2475T 1271V 7, ε =1.66 0.57, 3106T 1587V 8, ε =1.37 0.40, 3459T 1764V

Enter ? for help Enter ? for help Enter ? for help

9, ε =1.15 0.37, 3681T 1876V 10, ε =0.73 0.33, 3588T 1831V 11, ε =0.48 0.28, 3530T 1803V

Figure 10: Firsr mesh to 8Th mesh

13

Enter ? for help Enter ? for help Enter ? for help

12, ε =0.47 0.32, 3675T 1875V 13, ε =0.40 0.27, 3728T 1903V 14, ε =0.73 0.24, 3866T 1971V

Enter ? for help Enter ? for help Enter ? for help

15, ε =0.44 0.28, 3765T 1921V 16, ε =0.45 0.30, 3814T 1945V 17, ε =0.35 0.27, 3797T 1936V

Figure 11: 9Th mesh to 17Th Mesh

Figure 12: three zoom of the 17th mesh around intersection of boundary layer

14

3.3 Mesh adaption loop to compute a flow around a NACA0012 wing

In this section we make the computation of Euler flow around a wing at Mach number 0.8,
with the NSC2KE software get from:

ftp://ftp.inria.fr/INRIA/Projects/Gamma/NSC2KE.tar.gz

The half wing is defined analyticaly for t ∈ [0, 1.008930411365] by

x(t) =
t

1.00893041136

y(t) = 5 ∗ .12 ∗ (0.2969
√

t − 0.126t − 0.3516t2 + 0.2843t3 − 0.1015t4)

The initial mesh (geometry) is created with the following awk script (where awk is a common
unix command) with 40 vertices and egdes on the wing and eight vertices on outside boundary
(circle with radius 5 and with center (1, 0))

END {

Pi=3.14159265358979;

i20=20;

i8=8;

r = 5;

c0x = 1;

c0y=0;

print "Dimension",2;

print "MaximalAngleOfCorner 46";

print "Vertices",i20+i20+i8;

the vertices on naca012 wing (clock wise)

for (i=-i20;i<i20;i++) {

x = i/i20;

x = x^4;

t = 1.008930411365*x;

y = 5*.12*(0.2969*sqrt(t) - 0.126*t - 0.3516*t^2 + 0.2843*t^3 - 0.1015*t^4);

if(i<0) y=-y;

print x,y,3;}

vertices on circle (counter clock wise)

for (i=0;i<i8;i++) {

t=i*Pi*2/i8;

print c0x+r*(cos(t)),c0y+r*sin(t),5;}

print "Edges",i20+i20+i8;

Edges on wing

k = 1

j = i20+i20-1; # previous points

for (i=0;i<i20+i20;j=i++)

{ print j+k,i+k,3;} # previous, current vertex

Edges on circle

k = i20+i20+1;

j = i8-1;# previous points

for (i=0;i<i8;j=i++)

{ print k+j,k+i,5;} # previous, current vertex

One subdomain, region on left side of the wing

because clock wise sens.

print "SubDomain",1;

print 2,1,1,0;

}

15

The adpation loop is done with a Unix shell script. Any modification is done in the flow
solver NSC2KE software, all the transformations are done in the shell script. The input files
for NSC2KE are the two files DATA and MESH, plus a file INIT NS for restarting, and the output
files are SOL NS and RESIDUAL.

The source of the shell script is

#!/bin/sh -eu

The -e option to stop on error

We use awk to do flotting point operation in the shell

#

installation variable

bamg=../../bamg

NSC2KE=ns/NSC2KE

For awk because in french the number 1/1000 is written 0,001 not 0.001.

To be sure the RADIXCHAR is ’.’ (cf. Native Language Support, do man locale)

LANG=C

export LANG

Some VAR

ifin=20

j=0

INIT=0

LastIteration=0

NBITER=500

HMIN=0.05

HMINGLOBAL=0.0005

HCOEF=0.8

Clean of the output file

rm -f [A-Z]*

Create the geometry file

awk -f naca.awk </dev/null >MESH_g.msh

create the initial mesh MESH_0.amdba

$bamg -g MESH_g.msh -o MESH_$j.msh -hmax 2 -oamdba MESH_$j.amdba

while [$j -lt $ifin] ; do

i = j + 1

i=‘expr $j + 1‘

LastIteration = LastIteration + NBITER

LastIteration=‘expr $LastIteration + $NBITER‘

set the current MESH

rm -f MESH

ln -s MESH_$j.amdba MESH

create the DATA file for NSC2KE form file data

change 2 lines for initialisation

rm -f DATA

sed -e "s/^INIT/$INIT/" -e "s/^lastIteration/$LastIteration/" <data >DATA

echo "--------- NSC2KE iteration $j -----------"

$(NSC2KE)

find the nb of vertices in the file MESH

nbv=‘head -1 MESH|awk ’{print $1}’‘

create the bb file for interpolation

echo "2 4 $nbv 2" > SOL_$j.bb

cat SOL_NS >> SOL_$j.bb

create the bb file for metric construction

16

in file SOL_NS on each line i we have ro ro*u ro*v ro*energy

at vertex i

+ a last line with 2 number last iteration and last time

echo "2 1 $nbv 2" > MACH.bb

awk ’NF==4 { print sqrt($2*$2+$3*$3)/$1}’ SOL_NS >> MACH.bb

put all the residual in one file

cat RESIDUAL >>RESIDU

set HMIN = MAX($HMINGLOBAL,$HMIN*$HCOEF)

HMIN=‘awk "END {c=$HMIN*$HCOEF;c=c<$HMINGLOBAL ?$HMINGLOBAL:c; print c};" </dev/null‘

$bamg -b MESH_$j.msh -err 0.001 -errg 0.05 -AbsError \

-hmin $HMIN -hmax 3 -Mbb MACH.bb -o MESH_$i.msh \

-oamdba MESH_$i.amdba -ratio 2 -rbb SOL_$j.bb -wbb INIT_$i.bb

creation of the INIT_NS for NSC2KE

remove fisrt line form bb file and add the last line of SOL_NS

sed 1d <INIT_$i.bb >INIT_NS

tail -1 SOL_NS >>INIT_NS

change i and not initialisation

j=$i

INIT=1

done

Remark: this unix shell script is quite complicated because we need floating arithmetic
and we use awk to do this, the file modification is not so easy at this level (We don’t want to
make any modification in the software NSC2KE).

Now the real input file with two parameters INIT and LastIteration for NSC2KE is data
and contains:

0 --> =0 2D, =1 AXISYMMETRIC

0 --> =0 Euler, =1 Navier-Stokes

1.e2 --> Reynolds by meter (the mesh is given in meter)

0. --> inverse of Froude number (=0 no gravity)

0.8 --> inflow Mach number

1. --> ratio pout/pin

1 --> wall =1 newmann b.c.(adiabatic wall), =2 (isothermal wall)

300. --> inflow temperature (in Kelvin) for Sutherland laws

288. --> if isothermal walls , wall temperature (in Kelvin)

0.0 --> angle of attack

1 --> Euler fluxes =1 roe, =2 osher,=3 kinetic

3 --> nordre = 1st order scheme, =2 2ndorder, =3 limited 2nd order

1 --> =0 global time steping (unsteady), =1 local Euler, =2 local N.S.

1. --> cfl

LastIteration --> number of time step

500 --> frequence for the solution to be saved

1.e10 --> maximum physical time for run (for unsteady problems)

-4. --> order of magnitude for the residual to be reduced (for steady problems)

INIT --> =0 start with uniform solution, =1 restart from INIT_NS

cccc turbulence ccc

0 --> =0 no turbulence model, =1 k-epsilon model

0 --> =0 two-layer technique, =1 wall laws

1.e-2 --> delta in wall laws or limit of the one-eq. model. (in meter)

0 --> =0 start from uniform solution for k-epsilon, =1 from INIT_KE

-1.e10 1.e10 -1.e10 1.e10 --> xtmin,xtmax,ytmin,ytmax (BOX for k-epsilon r.h.s)

The results of some iterations are show in Fig. 13 and 14.
The output file of the execution on a workstation HP9000/C160 is filtered with the unix

command
egrep ’iteration|With io|HMIN|Vertices|real|user|sys|residu|imum mach’ output |\

awk -f awk.grep-output

17

INRIA-MODULEF

INRIA-MODULEF

INRIA-MODULEF

INRIA-MODULEF

INRIA-MODULEF

INRIA-MODULEF

INRIA-MODULEF

INRIA-MODULEF

Iteration 0, 222 vertices and 388 triangles, hmin = 0.04 Iso Mach

Figure 13: initialisation (Iterations 0)

INRIA-MODULEF

INRIA-MODULEF

INRIA-MODULEF

INRIA-MODULEF

INRIA-MODULEF

INRIA-MODULEF

INRIA-MODULEF

INRIA-MODULEF

Iteration 19, 12057 vertices and 23756 triangles, hmin = 0.000576461 Iso Mach

Figure 14: Last Iteration (19)

18

Cpu for meshing with io : 0.55s Nb Triangles/s = 705.454545455

iter 0 nb time step = 500 residual = 2.85105E-07

kt= 500 Hmim = 0.04 Mach min,max = .70057814E-02 .11067072E+01

Cpu time for meshing with io : 1.34s Nb Triangles/s = 1620.14925373

iter 1 nb time step = 1000 residual = 1.73430E-06

kt= 1000 Hmim = 0.032 Mach min,max = .30541784E+00 .12212421E+01

Cpu time for meshing with io : 3.02s Nb Triangles/s = 1658.60927152

iter 2 nb time step = 1500 residual = 1.18474E-07

kt= 1500 Hmim = 0.0256 Mach min,max = .20168246E+00 .12325419E+01

Cpu time for meshing with io : 3.94s Nb Triangles/s = 1474.61928934

iter 3 nb time step = 2000 residual = 1.52682E-07

kt= 2000 Hmim = 0.02048 Mach min,max = .17727955E+00 .12367692E+01

Cpu time for meshing with io : 4.54s Nb Triangles/s = 1468.94273128

iter 4 nb time step = 2500 residual = 6.38675E-08

kt= 2500 Hmim = 0.016384 Mach min,max = .23734790E+00 .12410167E+01

Cpu time for meshing with io : 5.5s Nb Triangles/s = 1453.45454545

iter 5 nb time step = 3000 residual = 1.57335E-07

kt= 3000 Hmim = 0.0131072 Mach min,max = .20607744E+00 .12512298E+01

Cpu time for meshing with io : 6.29s Nb Triangles/s = 1404.29252782

iter 6 nb time step = 3500 residual = 8.24310E-08

kt= 3500 Hmim = 0.0104858 Mach min,max = .18735437E+00 .12603147E+01

Cpu time for meshing with io : 6.86s Nb Triangles/s = 1407.43440233

iter 7 nb time step = 4000 residual = 1.30050E-07

kt= 4000 Hmim = 0.00838864 Mach min,max = .10309023E+00 .12801212E+01

Cpu time for meshing with io : 7.74s Nb Triangles/s = 1290.05167959

iter 8 nb time step = 4500 residual = 6.85484E-08

kt= 4500 Hmim = 0.00671091 Mach min,max = .73364258E-01 .12616327E+01

Cpu time for meshing with io : 8.32s Nb Triangles/s = 1294.23076923

iter 9 nb time step = 5000 residual = 7.39922E-08

kt= 5000 Hmim = 0.00536873 Mach min,max = .99447273E-01 .12856138E+01

Cpu time for meshing with io : 9.23s Nb Triangles/s = 1274.32286024

iter 10 nb time step = 5500 residual = 5.10840E-08

kt= 5500 Hmim = 0.00429498 Mach min,max = .84549703E-01 .12803136E+01

Cpu time for meshing with io : 9.9s Nb Triangles/s = 1284.54545455

iter 11 nb time step = 6000 residual = 2.79104E-08

kt= 6000 Hmim = 0.00343598 Mach min,max = .50481815E-01 .12759361E+01

Cpu time for meshing with io : 10.74s Nb Triangles/s = 1256.1452514

iter 12 nb time step = 6500 residual = 2.30129E-08

kt= 6500 Hmim = 0.00274878 Mach min,max = .40456027E-01 .12978700E+01

Cpu time for meshing with io : 11.4s Nb Triangles/s = 1261.92982456

iter 13 nb time step = 7000 residual = 1.83656E-08

kt= 7000 Hmim = 0.00219902 Mach min,max = .19100450E-01 .12874627E+01

Cpu time for meshing with io : 12.16s Nb Triangles/s = 1237.25328947

iter 14 nb time step = 7500 residual = 1.44616E-08

kt= 7500 Hmim = 0.00175922 Mach min,max = .33476338E-01 .12832742E+01

Cpu time for meshing with io : 13.15s Nb Triangles/s = 1242.96577947

iter 15 nb time step = 8000 residual = 1.22459E-08

kt= 8000 Hmim = 0.00140738 Mach min,max = .27367299E-01 .13000010E+01

Cpu time for meshing with io : 13.69s Nb Triangles/s = 1266.25273923

iter 16 nb time step = 8500 residual = 1.06712E-08

kt= 8500 Hmim = 0.0011259 Mach min,max = .24571048E-01 .13177971E+01

Cpu time for meshing with io : 14.86s Nb Triangles/s = 1288.15612382

iter 17 nb time step = 9000 residual = 7.31801E-09

kt= 9000 Hmim = 0.00090072 Mach min,max = .33929362E-02 .12964380E+01

Cpu time for meshing with io : 16.62s Nb Triangles/s = 1254.87364621

iter 18 nb time step = 9500 residual = 5.45442E-09

kt= 9500 Hmim = 0.000720576 Mach min,max = .47151004E-02 .13105147E+01

Cpu time for meshing with io : 18.77s Nb Triangles/s = 1265.63665424

iter 19 nb time step = 10000 residual = 4.03388E-09

kt= 10000 Hmim = 0.000576461 Mach min,max = .82820384E-02 .13168910E+01

Cpu time for meshing with io : 20.82s Nb Triangles/s = 1285.20653218

real 2:03:58.6

user 1:43:23.8

We do no analysis of the results because, here we just want to show a way to make
mesh adaption, not to make real computations, and that you can see after 19 iterations, the

19

maximiun of the Mach number is not stabilized, so the computations are not really converge.
In this example the user CPU time for meshing is 3mn 18.89s over a total user CPU time
1H43mn 23.8s. The ratio of CPU time for meshing over total CPU time is 3.20% in this case.

4 List of the Different Type of File

4.1 DB Mesh File

Notations. The terms in policy are the file items. The blanks, the <<new lines>> and
the tabulations are the item separators. The comments start with the character string # and
end at the end of the line, except if they are in a string. The comments are placed between
the fields.

The notation (... , i=1,n) stands for an implicit DO loop as in FORTRAN.
The syntactic entities are field names, integer values (I) , (double) floating values (R) ,

strings (C*) (1024 characters at the best) being placed between "". The blanks, the <<new
lines>> are significant when used between quotes and to use a quote " in a string, one has
to type it twice " " (as in FORTRAN), booleans (B) : 0 for false, an other value for true (1
in general), numbers: for instance a vertex number is denoted by @@Vertex.

The entities of number type (assuming that the numbering starts from 1 as in FORTRAN)
are the vertex numbers @@Vertex, the edge numbers @@Edge, the triangle numbers @@Tria,
the quadrilateral numbers @@Quad, the numbers of a vertex in the appropriate support (see
after), @@Vertexsupp, the numbers of a support edge @@Edgesupp, the numbers of a support
triangle @@Triasupp, the numbers of a support quadrangle @@Quadsupp,

In addition, Ref φi denotes a number related to physical attribute.

Description in extenso. The data structure includes at first a string identifying the release

• MeshVersionFormatted 0

Then, the fields are defined as follows

• Dimension (I) dim

• Vertices (I) NbOfVertices
(((R) xj

i , j=1,dim) , (I) Refφv
i , i=1 , NbOfVertices)

• Edges (I) NbOfEdges

(@@Vertex1

i , @@Vertex2

i , (I) Refφe
i , i=1 , NbOfEdges)

• Triangles (I) NbOfTriangles

((@@Vertex
j
i , j=1,3) , (I) Refφt

i , i=1 , NbOfTriangles)
• Quadrilaterals (I) NbOfQuadrangles

((@@Vertex
j
i , j=1,4) , (I) Refφt

i , i=1 , NbOfQuadrangles)
• SubDomain (I) NbOfSubDomain

((I) typei, if

typei == 2 : @@Edgei

typei == 3 : @@Triai

typei == 4 : @@Quadi

, (I) Orientationi , (I) Refφsdd
i ,

i=1 , NbOfSubDomain)

20

• SubDomainFromGeom (I) NbOfSubDomainFromGeom

((I) typei, if
{

typei == 2 : @@Edgei

}

, (I) Orientationi , (I) Refφsdd
i ,

i=1 , NbOfSubDomainFromGeom)
• SubDomainFromMesh (I) NbOfSubDomainFromMesh

((I) typei, if

{

typei == 3 : @@Triai

typei == 4 : @@Quadi

}

, (I) Orientationi , (I) Refφsdd
i ,

i=1 , NbOfSubDomainFromMesh)
• Corners (I) NbOfCorners
(@@Vertexi , i=1 , NbOfCorners)

• RequiredVertices (I) NbOfRequiredVertices

(@@Vertexi , i=1 , NbOfRequiredVertices)
• RequiredEdges (I) NbOfRequiredEdges

(@@Edgei , i=1 , NbOfRequiredEdges)
• TangentAtEdges (I) NbOfTangentAtEdges

(@@Edgei , (I) VertexInEdge ,((R) xj
i , j=1,dim) ,

i=1 , NbOfTangentAtEdges)
• AngleOfCornerBound (R) θ

• Geometry

(C*) FileNameOfGeometricSupport

– VertexOnGeometricVertex

(I) NbOfVertexOnGeometricVertex
(@@Vertexi ,@@Vertex

geo
i , i=1 , NbOfVertexOnGeometricVertex)

– EdgeOnGeometricEdge

(I) NbOfEdgeOnGeometricEdge

(@@Edgei , @@Edge
geo
i , i=1 ,NbOfEdgeOnGeometricEdge)

• MeshSupportOfVertices

(C*) FileNameOfMeshSupport

– VertexOnSupportVertex

(I) NbOfVertexOnSupportVertex

(@@Vertexi ,@@Vertex
supp
i , i=1 , NbOfVertexOnSupportVertex)

– VertexOnSupportEdge

(I) NbOfVertexOnSupportEdge

(@@Vertexi ,@@Edge
supp
i , (R) usupp

i , i=1 , NbOfVertexOnSupportEdge)

• CrackedEdges (I) NbOfCrackedEdges

(@@Edge1

i , @@Edge2

i , i=1 ,NbOfCrackedEdges)
• EquivalencedEdges (I) NbOfEquivalencedEdges

(@@Edge1

i , @@Edge2

i , i=1 ,NbOfEquivalencedEdges)
• PhysicsReference (I) NbOfPhysicsReference

((I) Refφi , (C*) CommentOnThePhysic , i=1 ,NbOfPhysicsReference)

21

• IncludeFile (C*) filename

• BoundingBox ((R) Mini (R) Maxi , i=1 , dim)

A Few Remarks. In the following, we give some comments concerning the different fields.
At first, one may notice that some fields are strictly required while some others are optional1.

The comments and remarks are given according to their introduction order in the above
description.

The string MeshVersionFormatted indicates the release identificator and the type of the
present file. MeshVersionUnformatted is an alternate case for this field.

The edge table, Edges, includes only, a priori, the edges with a significant reference number
Refφ.

The elements are given with respect to their geometric nature (triangle, quadrilaterals,
etc.). In this way, when several types of elements exist in the mesh, it is not required to
take care of the element type and thus to have to manage a table which content (in terms of
number of values) may change from one element to the other.

The sub-domains (cf. SubDomainFromGeom or SubDomain) (a connex component of the
plan minus all the geometric edges) are defined using one edge in two dimensions along with
an orientation information, (Orientationi), indicating on which side of this entity the sub-
domain lies. The sub-domain number is Refφs.

The mesh generator create the record SubDomainFromMesh, where the sub-domain is de-
fined with a triangle or a quadrilateral and the orentation is always 1, plus the Refφs.

Warning: if no sub-domain are defined with SubDomainFromGeom or SubDomain then we
suppose to mesh all the bounded connex component of the plan minus all the geometric edges.

Remark: the records SubDomainFromGeom and SubDomain are exclusive.

A corner point, Corners (for a support type structure), is a point where there is a C0

continuity between the edges sharing the point. Thus, a corner will be necessarily a mesh
vertex.

The required vertices, RequiredVertices, are the vertices of the support that must be
present in the mesh as element vertices. Similarly, some edges or (triangular or quadrilateral)
faces can be required.

The tangent vector to an edge, TangentAtEdges, consists to give the tangent vector (with
respect to the surface) for this edge at the indicated endpoint. Giving the tangent vector of
an edge by means of the tangent vector at a point enables us to deal with the case where
several edges (boundary lines) are emanating from a point.

The corner threshold, AngleOfCornerBound, is a value enabling to decide the continuity
type between two edges or two faces not clearly defined or not explicitely specified.

The mesh vertices are related to some entities of the support. There are two categories of
support, a geometric support and a current mesh considered as a support.

If the support is of a geometric nature, Geometry, defined by a file, it gives the relation-
ships between the vertices, boundary edges and boundary faces of the current mesh with

1In this way, it will be possible to add some fields that are not yet defined.

22

the geometric entities. Thus, a mesh vertex can be identical to a geometric vertex, a mesh
edge can have a geometric edge as support and, in three dimensions, a face (a triangle or a
quadrilateral) can have a geometric face as support. These relationships allow to classify the
entities of the current mesh with respect to their membership to an entity defining the domain
geometry (this information will be useful in particular when constructing finite elements of
order greater than one).

If the support is a (usual) mesh by itself, MeshSupportOfVertices, defined by a file, it
gives the relationships between the current mesh and the above mesh. A vertex of the current
mesh belongs to an entity2 of the support mesh (this information may be relevant when
interpolating or transporting a solution from one mesh to the other in an adaptive iterative
process for instance).

Hence, in an iterative computational process, the support for the mesh at a given iteration
step is the mesh of the previous step. In this way, we indicate that a vertex, i, of the current
mesh

• is identical with a vertex of the support,

• lies on an edge of the support at abcissa u,

• falls within a triangle of the support, u, v being the coordinates in the reference element,

A vertex not in this “table” is considered as a free vertex. The relationships defined in this
way enable the software to know the location of a vertex using the reference element related
to the support entity including this vertex. To use the reference element to arrive to the
current element, one must use one of the following relations according to the geometric type
of the element

• for an edge with endpoints k1 and k2

xj
i = (1 − u)xj

k1
+ uxj

k2

• for a triangle with vertices kl, l = 1, 3

xj
i = (1 − u − v)xj

k1
+ uxj

k2
+ vxj

k3

• for a quadrilateral with vertices kl, l = 1, 4

xj
i = (1 − u)(1 − v)xj

k1
+ u(1 − v)xj

k2
+ uvxj

k3
+ (1 − u)vxj

k4

Remark. These informations are naturally known by the mesh generation algorithm and
relatively easy to obtain. Moreover, when simplicial elements are used, the barycentric coor-
dinates are obvious to obtain and thus are not strictly required to be stored.

Crack definition is the purpose of three fields, CrackedEdges,
CrackedTriangles and CrackedQuadrangles; we specify then that an edge (resp. a face) is
identical in terms of geometry to another edge (resp. face).

2For a boundary element, a projection will be needed to obtain the sought location.

23

1

2

1

2

4
3

1 2

3

Figure 15: Canonical numbering.

The field, EquivalencedEdges indicate that two edges must be meshed the same way
(e.g. the periodic meshes).

A comment about the meanning of the physical reference numbers is provided in the field
PhysicsReference.

It is possible to include a file in the data structure, IncludeFile. This inclusion will be
made without any compatibility insurance.

For some applications, it is useful to know the size of the domain, i.e. the extrema of its
point coordinates, which is the meaning of the field BoundingBox.

4.1.1 A Geometric Data Structure

The general structure allows to specify a mesh describing the geometry of the given domain.
This mesh is used both to define the geometry and the physical conditions of the problem
under consideration.

In this case, some of the above fields are not relevant. We like to give some indications
about this geometric structure in two dimensions. One is referred hereafter to see how such
a structure can be effectively used to construct a geometric representation and to see how to
use this representation for boundary meshing (remeshing) purpose.

We give the list of the fields used in this case by indicating at first the required fields

• MeshVersionFormatted 0

• Dimension (I) dim

• Vertices (I) NbOfVertices
(((R) xj

i , j=1,dim) , (I) Refφv
i , i=1 , NbOfVertices)

• Edges (I) NbOfEdges

(@@Vertex1

i , @@Vertex2

i , (I) Refφe
i , i=1 , NbOfEdges)

and then the optional fields

• SubDomain (I) NbOfSubDomain

((I) typei,
{

typei == 2 : @@Edgei

}

, (I) Orientationi , (I) Refφs
i ,

i=1 , NbOfSubDomain)
• Corners (I) NbOfCorners
(@@Vertexi , i=1 , NbOfCorners)

• RequiredVertices (I) NbOfRequiredVertices

(@@Vertexi , i=1 , NbOfRequiredVertices)

24

• RequiredEdges (I) NbOfRequiredEdges

(@@Edgei , i=1 , NbOfRequiredEdges)
• TangentAtEdges (I) NbOfTangentAtEdges

(@@Edgei , (I) VertexInEdge ,((R) xj
i , j=1,dim) , i=1 , NbOfTangentAtEdges)

• AngleOfCornerBound (R) θ

• CrackedEdges (I) NbOfCrackedEdges

(@@Edge1

i , @@Edge2

i , i=1 ,NbOfCrackedEdges)
• EquivalencedEdges (I) NbOfEquivalencedEdges

(@@Edge1

i , @@Edge2

i , i=1 ,NbOfEquivalencedEdges)
• PhysicsReference (I) NbOfPhysicsReference

((I) Refφi , (C*) CommentOnThePhysic , i=1 ,NbOfPhysicsReference)
• IncludeFile (C*) filename

• BoundingBox ((R) Mini (R) Maxi , i=1 , dim)

The geometric representation of a boundary in two dimensions will be detailed hereafter.
At this time, just keep in mind that we will use the edges provided in the data structure so
as to define some curves of order three in the following way 3

• an edge whose endpoints are corners and if no additional information are provided will
be represented by a straight segment,

• an edge whose endpoints are corners but whose tangent is provided at one endpoint will
be represented by a curve of degree two,

• an edge whose endpoints are corners but whose tangents are provided at these corners
will be represented by a curve of degree three,

• an edge whose endpoints are not corners and with no additional information will be
represented by a curve of degree three. Indeed, we use in this case the adjacent edges
so as to evaluate the tangents at the edge endpoints,

• etc.

In short, an edge defined by two informations will be approached by a straight line, three
information allow to obtain a curve of degree two and four data allow for a approximation4

of degree three.

This way of constructing the geometric support from a geometric support mesh being
briefly established, we like to give an example.

We consider the rather simple domain of the Fig. 16 where Γ denotes (with no more precise
information at this stage) the boundary part associated with the segments CF and FD. We
aim at discussing the different ways to construct a mesh data structure by observing in each
case the resulting geometric definition.

Hence, if we provide as data the following information

3A different choice is clearly possible leading to modify the type of representation and thus the way in which
the related information are used furthermore.

4One also may say that an approximation of degree three is constructed with, in some cases, when some
data are missing, the tangents defined by the edge itself.

25

A B

C
F

DE

Γ

Figure 16: The domain to be defined.

• MeshVersionFormatted 0

• Dimension 2

• Vertices 6
(xA, yA, 1), (xB , yB, 1), (xC , yC , 1), (xD, yD, 1), (xE , yE, 1), (xF , yF , 1)

• Edges 6
(A, B, 1), (B, C, 1), (A, E, 1), (E, D, 1), (F, D, 1), (F, C, 1)

• SubDomain 1
2 4 -1 10

• Corners 5
A B C D E

Six points have been implicitely defined5, as well as six edges, the domain is on the “right
side” of the edge number 4, alias ED, its material number is 10. The edges AB, BC, AE and
ED will be approximated by some straight lines, the “curve” Γ is the union of the segments
FD and FC with, in F , a tangent defined thanks to DC (as F is not a corner) and, in D
(resp. in C), a tangent supported by FD (resp. FC) as D (resp. C) is a corner, thus Γ will
be a piecewise curve of degree two.

Remark. If the edge number 4 is DE (instead of ED), the sub-domain must be described
by the sequence 2 4 1 10 instead of 2 4 -1 10.

How to define the geometric data structure so as Γ be a circle (at least a curve close
enough to a circle)? It is only needed to enrich the structure by providing more points along
Γ, then an approximation of degree two will be obtained for each terminal sub-segment and of
a degree three elsewhere. One may also define the tangents at the endpoints so as to obtained
an approximation of degree three everywhere.

One may notice that we do not explain how to construct the desired data structure from
a practical point of view. Clearly a preprocessor (of CAD type) will be in charge of this task.

5In this example, a point and its number stand for the same notion, for instance the point A is the same
as the point with number A.

26

5 The Two-Dimensional Case Mesh Data Structure

The mesh data structure, output of a mesh generation algorithm, refers to the geometric data
structure and in some case to another mesh data structure.

In this case, the fields are

• MeshVersionFormatted 0

• Dimension (I) dim

• Vertices (I) NbOfVertices
(((R) xj

i , j=1,dim) , (I) Refφv
i , i=1 , NbOfVertices)

• Edges (I) NbOfEdges

(@@Vertex1

i , @@Vertex2

i , (I) Refφe
i , i=1 , NbOfEdges)

• Triangles (I) NbOfTriangles

((@@Vertex
j
i , j=1,3) , (I) Refφt

i , i=1 , NbOfTriangles)
• Quadrilaterals (I) NbOfQuadrilaterals

((@@Vertex
j
i , j=1,4) , (I) Refφt

i , i=1 , NbOfQuadrilaterals)
• Geometry

(C*) FileNameOfGeometricSupport

– VertexOnGeometricVertex

(I) NbOfVertexOnGeometricVertex
(@@Vertexi ,@@Vertex

geo
i , i=1,NbOfVertexOnGeometricVertex)

– EdgeOnGeometricEdge

(I) NbOfEdgeOnGeometricEdge

(@@Edgei , @@Edge
geo
i , i=1,NbOfEdgeOnGeometricEdge)

• CrackedEdges (I) NbOfCrackedEdges

(@@Edge1

i , @@Edge2

i , i=1 ,NbOfCrackedEdges)

When the current mesh refers to a previous mesh, we have in addition

• MeshSupportOfVertices

(C*) FileNameOfMeshSupport

– VertexOnSupportVertex

(I) NbOfVertexOnSupportVertex

(@@Vertexi ,@@Vertex
supp
i , i=1,NbOfVertexOnSupportVertex)

– VertexOnSupportEdge

(I) NbOfVertexOnSupportEdge

(@@Vertexi ,@@Edge
supp
i , (R) usupp

i , i=1,NbOfVertexOnSupportEdge)
– VertexOnSupportTriangle

(I) NbOfVertexOnSupportTriangle

(@@Vertexi ,@@Tria
supp
i , (R) usupp

i , (R) vsupp
i ,

i=1 ,NbOfVertexOnSupportTriangle)
– VertexOnSupportQuadrilaterals

(I) NbOfVertexOnSupportQuadrilaterals

(@@Vertexi ,@@Quad
supp
i , (R) usupp

i , (R) vsupp
i ,

i=1 ,NbOfVertexOnSupportQuadrilaterals)

27

5.1 bb File type for Store Solutions

The file is formatted such that:
2 nbsol nbv 2

((Uij, ∀i ∈ {1, ..., nbsol}) , ∀j ∈ {1, ..., nbv})
where

• nbsol is a integer equal to the number of solutions.

• nbv is a integer equal to the number of vertex .

• Uij is a real equal the value of the i solution at vertex j on the associated mesh back-
ground if read file, generated if write file.

5.2 BB File Type for Store Solutions

The file is formatted such that:
2 n typesol1 ... typesoln nbv 2

(((

Uk
ij, ∀i ∈ {1, ..., typesolk}

)

, ∀k ∈ {1, ...n}
)

∀j ∈ {1, ..., nbv}
)

where

• n is a integer equal to the number of solutions

• typesolk, type of the solution number k, is

– typesolk = 1 the solution k is scalare (1 value per vertex)

– typesolk = 2 the solution k is vectorial (2 values per unknown)

– typesolk = 3 the solution k is a 2 × 2 symmetric matrix (3 values per vertex)

– typesolk = 4 the solution k is a 2 × 2 matrix (4 values per vertex)

• nbv is a integer equal to the number of vertices

• Uk
ij is a real equal the value of the component i of the solution k at vertex j on the

associated mesh background if read file, generated if write file.

5.3 Metric File

A metric file can be of two types, isotropic or anisotropic.
the isotrope file is such that
nbv 1

hi ∀i ∈ {1, ..., nbv}
where

• nbv is a integer equal to the number of vertices.

• hi is the wanted mesh size near the vertex i on background mesh, the metric is Mi =
h−2

i Id, where Id is the identity matrix.

The metric anisotrope
nbv 3

a11i,a21i,a22i ∀i ∈ {1, ..., nbv}
where

28

• nbv is a integer equal to the number of vertices,

• a11i, a12i, a22i is metric Mi =
(

a11i a12i

a12i a22i

)

which define the wanted mesh size in a

vicinity of the vertex i such that h in direction u ∈ IR2 is equal to |u|/
√

u · Mi u , where
· is the dot product in IR2, and | · | is the classical norm.

5.4 List of AM FMT, AMDBA Meshes

The mesh is only composed of triangles and can be defined with the help of the following two
integers and four arrays:

nbt is the number of triangles.

nbv is the number of vertices.

nu(1:3,1:nbt) is an integer array giving the three vertex numbers counterclockwise for
each triangle.

c(1:2,nbv) is a real array giving the two coordinates of each vertex.

refs(nbv) is an integer array giving the reference numbers of the vertices.

reft(nbv) is an integer array giving the reference numbers of the triangles.

AM FMT Files In fortran the am fmt files are read as follows:

open(1,file=’xxx.am_fmt’,form=’formatted’,status=’old’)

read (1,*) nbv,nbt

read (1,*) ((nu(i,j),i=1,3),j=1,nbt)

read (1,*) ((c(i,j),i=1,2),j=1,nbv)

read (1,*) (reft(i),i=1,nbt)

read (1,*) (refs(i),i=1,nbv)

close(1)

AM Files In fortran the am files are read as follows:

open(1,file=’xxx.am’,form=’unformatted’,status=’old’)

read (1,*) nbv,nbt

read (1) ((nu(i,j),i=1,3),j=1,nbt),

& ((c(i,j),i=1,2),j=1,nbv),

& (reft(i),i=1,nbt),

& (refs(i),i=1,nbv)

close(1)

AMDBA Files In fortran the amdba files are read as follows:

open(1,file=’xxx.amdba’,form=’formatted’,status=’old’)

read (1,*) nbv,nbt

read (1,*) (k,(c(i,k),i=1,2),refs(k),j=1,nbv)

read (1,*) (k,(nu(i,k),i=1,3),reft(k),j=1,nbt)

close(1)

29

msh Files In fortran the msh files are read as follows:

open(1,file=’xxx.msh’,form=’formatted’,status=’old’)

read (1,*) nbv,nbt

read (1,*) ((c(i,k),i=1,2),refs(k),j=1,nbv)

read (1,*) ((nu(i,k),i=1,3),reft(k),j=1,nbt)

close(1)

ftq Files In fortran the ftq files are read as follows:

open(1,file=’xxx.ftq’,form=’formatted’,status=’old’)

read (1,*) nbv,nbe,nbt,nbq

read (1,*) (k(j),(nu(i,j),i=1,k(j)),reft(j),j=1,nbe)

read (1,*) ((c(i,k),i=1,2),refs(k),j=1,nbv)

close(1)

where if k(j) = 3 then the element j is a triangle and if k = 4 the the element j is a
quadrilateral.

6 Graphical interface

If the software was compiled with the FLAGS= -DDRAWING, then we have a graphic inter-
face:

The inputs for the graphic are: (case sensitive)

= restore the default view points

r refresh the screen

+ zoom +

- zoom -

T draw the sub-domain number

g draw the geometry

m draw the metric ellipse

V draw all the vertices

k draw the triangle contening the mouse point or the nearest edge (if outside point)

v find the nearest vertex to the mouse point

s find the nearest vertex to the mouse point and draw the metric

o find the nearest vertex to the mouse point and try to optimize

t find the triangle contening the mouse point (stupid way) for debug

c draw the center of inscribe circle of the triangle in the metric

e find the nearest edge in a triangle contening the mouse point (stupid way) for
debug

f continue to the next step

q make an error and do not continue

B activate the background mesh by adding a step, to desactive enter f

30

7 Related Tools

The command cvmsh2 filein fileout [-g filegeom] [-thetamax AngleOfCornerBound

transform the filenin in BD mesh store in fileout plus a geometry store in filegeom if -g
filegeom arguments are given.

The filename is composed prefix.suffix, the type of the input file is am, am fmt, or
amdba and is given by the suffix part.

8 BUGS and Limitations

The BD mesh files conteins generaly a link to other BD mesh file, like geometry file or
background mesh file. So if you move some mesh file don’t forget to move also all the related
file. If you want to use/exec in an other directory, you have to put absolute pathname when
you construct all files.

If you make an adapation loop with no BD mesh file, the geometry was reconstruct a each
step, so you can lose something (the geometry).

31

	Outline of the commands
	Detailed list of arguments
	Examples
	 Creation of Mesh from a Geometry
	Example Square]-1,1[2 with Mesh Size 0.666 at Vertices
	Example Square]-1,1[2 with a Refinement
	Example of a Circle

	Mesh adaption loop to minimize the interpolation error
	Mesh adaption loop to compute a flow around a NACA0012 wing

	List of the Different Type of File
	DB Mesh File
	A Geometric Data Structure

	The Two-Dimensional Case Mesh Data Structure
	bb File type for Store Solutions
	BB File Type for Store Solutions
	Metric File
	List of AM_FMT, AMDBA Meshes

	Graphical interface
	Related Tools
	BUGS and Limitations

