
SACLIB 1.1 User’s Guide
1

c© 1993 by Kurt Gödel Institute

Bruno Buchberger George E. Collins Mark J. Encarnación

Hoon Hong Jeremy R. Johnson Werner Krandick

Rüdiger Loos Ana M. Mandache Andreas Neubacher

Herbert Vielhaber

March 12, 1993

1RISC–Linz Report Series Technical Report Number 93-19 (Research Institute for Symbolic
Computation, Johannes Kepler University, A-4040 Linz, Austria)

SACLIB c© 1993 by Kurt Gödel Institute

The SACLIB system source code and User’s Guide are made available free of charge by
the Kurt Goedel Institute on behalf of the SACLIB Group.

Persons or institutions receiving it are pledged not to distribute it to others. Instead,
individuals wishing to acquire the system should obtain it by ftp directly from the Kurt
Goedel Institute, informing the Institute of the acquisition. Thereby the SACLIB Group
will know who has the system and be able to inform all users of any corrections or newer
versions.

Users are kindly asked to cite their use of the system in any resulting publications or in
any application packages built upon SACLIB.

Neither SACLIB nor any part thereof may be incorporated in any commercial software
product without the consent of the authors. Users developing non-commercial application
packages are kindly asked to inform us.

Requests or proposals for changes or additions to the system will be welcomed and given
consideration.

SACLIB is offered without warranty of any kind, either expressed or implied. However
reports of bugs or problems are encouraged.

1

Abstract

This paper lists most of the algorithms provided by SACLIB and shows how to call them
from C. There is also a brief explanation of the inner workings of the list processing and
garbage collection facilities of SACLIB.

Contents

1 Introduction 1
1.1 What is SACLIB? . 1
1.2 About this Guide . 2
1.3 SACLIB Maintenance . 2

2 List Processing 4
2.1 Mathematical Preliminaries . 4
2.2 Purpose . 4
2.3 Definitions of Terms . 4
2.4 Functions . 5

3 Arithmetic 9
3.1 Introduction . 9

3.1.1 Purpose . 9
3.1.2 Definitions of Terms . 9

3.2 Integer Arithmetic . 10
3.3 Modular Number Arithmetic . 13

3.3.1 Modular Digit Arithmetic . 13
3.3.2 Modular Integer Arithmetic . 13

3.4 Rational Number Arithmetic . 14

4 Polynomial Arithmetic 15
4.1 Introduction . 15

4.1.1 Purpose . 15
4.1.2 Definitions of Terms . 15

4.2 Polynomial Input and Output . 17
4.2.1 Recursive polynomials over Z . 17
4.2.2 Recursive polynomials over Q . 18
4.2.3 Distributive polynomials over Z . 19
4.2.4 Distributive polynomials over Q . 19
4.2.5 Conversion Between Recursive and Distributive

Representation . 19
4.2.6 Polynomials over Zm . 19

4.3 Domain Independent Polynomial Arithmetic 20
4.4 Integral Polynomial Arithmetic . 21
4.5 Modular Polynomial Arithmetic . 24
4.6 Rational Polynomial Arithmetic . 26
4.7 Miscellaneous Representations . 26

4.7.1 Sparse Distributive Representation 26
4.7.2 Dense Recursive Representation . 27

i

5 Linear Algebra 28
5.1 Mathematical Preliminaries . 28
5.2 Purpose . 28
5.3 Methods and Algorithms . 28
5.4 Functions . 29

6 Polynomial GCD and Resultants 31
6.1 Mathematical Preliminaries . 31
6.2 Purpose . 32
6.3 Definitions of Terms . 32
6.4 Methods and Algorithms . 33

6.4.1 GCD Computations . 33
6.4.2 Resultants . 33

6.5 Functions . 34

7 Polynomial Factorization 37
7.1 Mathematical Preliminaries . 37
7.2 Purpose . 37
7.3 Methods and Algorithms . 37
7.4 Functions . 38

8 Real Root Calculation 40
8.1 Mathematical Preliminaries . 40
8.2 Purpose . 40
8.3 Methods and Algorithms . 40
8.4 Definitions of Terms . 41
8.5 Functions . 41

9 Algebraic Number Arithmetic 44
9.1 Mathematical Preliminaries . 44
9.2 Purpose . 44
9.3 Methods and Algorithms . 44
9.4 Definitions of Terms . 46
9.5 Representation . 46
9.6 Functions . 47

A Calling SACLIB Functions from C 51
A.1 A Sample Program . 51
A.2 Dynamic Memory Allocation in SACLIB . 51
A.3 Declaring Global Variables to SACLIB . 54
A.4 Initializing SACLIB by Hand . 55
A.5 SACLIB Error Handling . 55
A.6 Compiling . 56

B ISAC: An Interactive Interface to SACLIB 57
B.1 What is ISAC? . 57
B.2 Supported SACLIB Algorithms . 57
B.3 Command Line Options . 57
B.4 Interface Functionality . 57
B.5 Interface Grammar . 58

ii

C Notes on the Internal Workings of SACLIB 61
C.1 Lists, GCA Handles, and Garbage Collection 61

C.1.1 Implementation of Lists . 61
C.1.2 Implementation of GCA Handles . 62
C.1.3 The Garbage Collector . 62

C.2 Constants and Global Variables . 63

Index 66

iii

List of Figures

A.1 A sample program. 52
A.2 Sample code using GCA handles. 53
A.3 Declaring global variables. 54
A.4 Sample code for initializing SACLIB by hand. 56

C.1 The SPACE array. 61
C.2 The cell structure of the list L = (1, (9, 6), 8). 61

iv

Chapter 1

Introduction

1.1 What is SACLIB?

SACLIB is a library of C programs for computer algebra derived from the SAC2 system.
Hoon Hong was the main instigator. Sometime early in 1990 he proposed to translate SAC2
(which was written in the ALDES language) into C instead of Fortran (as it had been since
1976), and he quickly wrote the required translator. The results were rewarding in several
ways. Hoon Hong, myself and Jeremy Johnson, working together at Ohio State University,
observed a speedup by a factor of about two in most applications and the powerful debugging
facilities associated with C became available.

Later that year Hoon finished his doctorate and moved to RISC, where Bruno Buch-
berger was writing a book on Gröbner bases and working on a set of programs to go with it.
He found that SAC2 was the only computer algebra system in which he could write these
programs without an unacceptable sacrifice in computational efficiency. It became apparent
that for similar reasons other researchers would benefit greatly from the availability of a
library of C programs derived from SAC2. Subsequently Bruno did much to promote and
facilitate the preparation of the library for distribution.

Although the translated programs were correct, they needed to be reformatted for user
consumption, a users guide was required, and we had compulsions to make some minor
improvements. Jeremy Johnson made many recent improvements to the algebraic number
algorithms and wrote the corresponding chapter of this Guide, among other things. Werner
Krandick made improvements to the polynomial real root algorithms and wrote the corre-
sponding chapter. Mark Encarnación wrote three chapters of the Guide and also converted
the polynomial input and output algorithms to modern notation from the original ”Fortran
notation”. Ana Mandache, Andreas Neubacher and Hoon Hong all toiled long hours editing
and reformatting programs. Andreas deserves special recognition. He initiated the writing
of the manual, wrote three chapters of the manual and two of the appendices, and did all
the required system maintenance. To facilitate experimenting with the functions in the
library, Herbert Vielhaber implemented ISAC, the interactive shell for SACLIB. He also
wrote the corresponding appendix of the manual.

Besides the above it would be unthinkable not to mention, collectively, all of my former
doctoral students, who contributed to the development of the SAC2 algorithms and the
research on which they were founded over a period of 26 years. During the last 20 of those
years Rüdiger Loos was a frequent collaborator. He proposed creation of an ”ALgorithm
DEScription language” for SAC1, the predecessor of SAC2, and wrote an ALDES-to-Fortran
translator.

This initial version of SACLIB is just the beginning of what is to come. We know how
to improve several of the programs in the current system and we will do it for subsequent
versions. Some basic functionalities are largely undeveloped in the currrent system (e.g.

1

linear algebra) but they will be supplied in subsequent versions. Some more advanced
functionalities (e.g. polynomial complex roots and quantifier elimination) are nearly ready
and will be forthcoming soon. Also we expect that users of the system will write programs
based on the ones we distribute and offer them to other users.

George E. Collins

1.2 About this Guide

The main goal in writing this guide was to enable the reader to quickly discover whether
SACLIB provides a function for a given problem. The structure of the paper should facilitate
searching for a function in the following way:

• Every chapter deals with functions operating over a certain domain (lists, numbers,
polynomials, etc.) or with functions solving certain problems (GCD computation,
factorization, real root calculation, etc.).

• Some chapters are split into sections covering more specific topics (integer arithmetic,
rational number arithmetic, integral polynomial arithmetic, etc.)

• Inside a section, functions are divided into various areas (basic arithmetic, predicates,
input/output, etc.).

• Inside these areas, closely related functions (a function and its inverse, functions
solving essentially the same problem, a function and its auxiliary routines, etc.) are
grouped.

This partitioning was done on a completely subjective basis. The intention always
was that the neophyte user should be able to pinpoint a desired function by using simple
heuristics. This approach may certainly fail in some cases, but with at most 50 functions
per section browsing them sequentially should always succeed in an acceptable amount of
time.

Another rather subjectively designed feature is the function descriptions. The lists were
generated automatically from the headers of the SACLIB source files. For some functions
additional remarks were added in emphasized type style.

Readers who want to use SACLIB functions in their C programs should read Appendix
A, which describes how initialization and cleanup are done, which files have to be #included,
etc. A detailed description of the input/output specifications of a given function can be
found in the comment block at the beginning of the corresponding source file. Read the
“Addendum to the SACLIB User’s Guide” for information on how to access these.

Those who want to know more about the inner workings of SACLIB should refer to
Appendix C which gives an overview of the internal representation of lists, the garbage
collector and the constants and global variables used internally. Descriptions of the high level
data structures used for implementing the elements of domains like integers, polynomials,
etc. can be found at the beginnings of the corresponding sections.

1.3 SACLIB Maintenance

The recommended way for reporting problems with SACLIB is sending e-mail to the main-
tenance account

saclib@risc.uni-linz.ac.at

or mail to

2

SACLIB Maintenance

Research Institute for Symbolic Computation

Johannes Kepler University

4020 Linz

Austria

Messages which might interest a greater audience should be sent to the mailing list

saclib-l@risc.uni-linz.ac.at

This list can be subscribed by sending a message with the body

subscribe saclib-l <first name> <last name>

to listserv@risc.uni-linz.ac.at.
Note that SACLIB is not sold for profit1. Therefore do not expect prompt service and

extensive support. Nevertheless, SACLIB is continuously maintained and extended, so do
not hesitate getting in contact with us.

1SACLIB maintenance is sponsored by the Research Institute for Symbolic Computation.

3

Chapter 2

List Processing

2.1 Mathematical Preliminaries

Let A be a finite domain and let C be the closure of A under the operation of finite sequence
formation. Then

• the elements of C are called objects,

• the elements of A are called atoms, and

• the elements of C\A are called lists.

Note that the atom a and the list (a) containing a as its only element are distinct objects.
Furthermore, the set of lists also encompasses the empty sequence, which we call the empty
list.

2.2 Purpose

Lists are the basis for nearly all SACLIB internal representations of elements of domains
like the integers, polynomials, algebraic numbers, etc. The SACLIB list processing package
implements the abstract concept of lists described above.

2.3 Definitions of Terms

atom An integer a such that −BETA < a < BETA.

list (handle) An integer L such that BETA ≤ L < BETAp, where BETA and BETAp are positive
integer constants1. L is a reference to the memory location of the first cell of the list
L.

The term list is used to denote the SACLIB internal representation of an element of
C\A as given in Section 2.1. If emphasis is on the reference to memory, the term list
handle is used.

(list) cell The memory space used to store a (reference to a) single list element and book-
keeping information needed to combine several cells into a list.

(list) element If L is the list (l1, l2, . . . , ln), then l1 is its first element, l2 is its second
element, etc.

empty list A list containing no elements, represented by the constant NIL.

1See Section C.2 for more information on BETA and BETAp.

4

object A term denoting both atoms and lists.

composition of an object l and a list (l1, l2, . . . , ln) is the list (l, l1, l2, . . . , ln).

reductum of a list (l1, l2, . . . , ln) is the list (l2, l3, . . . , ln). The reductum of the empty list
is undefined.

concatenation of lists (l1, l2, . . . , ln) and (m1,m2, . . . ,mk) is the list (l1, . . . ,
ln,m1, . . . ,mk).

inverse of a list (l1, l2, . . . , ln) is the list (ln, ln−1, . . . , l1).

length of a list (l1, l2, . . . , ln) is n. The length of the empty list is 0.

extent The number of cells used by an object. More precisely:

• EXTENT(a) = 0 if a is an atom.

• EXTENT(NIL) = 0.

• EXTENT(L) = 1+EXTENT(l1)+EXTENT((l2, . . . , ln)), where L is the non-empty list
(l1, l2, . . . , ln).

order The depth of an object. More precisely:

• ORDER(a) = 0 if a is an atom.

• ORDER(NIL) = 1.

• ORDER(L) = MAX(ORDER(l1) + 1, ORDER((l2, . . . , ln))), where L is the non-empty
list (l1, l2, . . . , ln).

side effects When a function modifies the content of one or more cells of the input list(s),
it is said to cause side effects. This is always noted in the function specifications.

destructive An operation on lists causing side effects is called destructive.

(unordered) set An (unordered) list of atoms.

2.4 Functions

Constructors:

M <- COMP(a,L) Composition. Prefixes an object to a list.

M <- COMP2(a,b,L) Composition 2. Prefixes 2 objects to a list.

M <- COMP3(a1,a2,a3,L) Composition 3. Prefixes 3 objects to a list.

M <- COMP4(a1,a2,a3,a4,L) Composition 4. Prefixes 4 objects to a list.

L <- LIST1(a) List, 1 element. Builds a list from one object.

L <- LIST2(a,b) List, 2 elements. Builds a list from 2 objects.

L <- LIST3(a1,a2,a3) List, 3 elements. Builds a list from 3 objects.

L <- LIST4(a1,a2,a3,a4) List, 4 elements. Builds a list from 4 objects.

L <- LIST5(a1,a2,a3,a4,a5) List, 5 elements. Builds a list from 5 objects.

L <- LIST10(a1,a2,a3,a4,a5,a6,a7,a8,a9,a10) List, 10 elements. Builds a list
from 10 objects.

Selectors:

ADV(L; a,Lp) Advance. Returns the first element and the reductum of a list.

5

ADV2(L; a,b,Lp) Advance 2. Returns the first 2 elements and the 2nd reductum of
a list.

ADV3(L; a1,a2,a3,Lp) Advance 3. Returns the first 3 elements and the 3rd reduc-
tum of a list.

ADV4(L; a1,a2,a3,a4,Lp) Advance 4. Returns the first 4 elements and the 4th
reductum of a list.

AADV(L; a,Lp) Arithmetic advance. Returns the first element and the reductum of
a non-empty list, returns 0 as the first element if the list is empty.

a <- FIRST(L) First. Returns the first element of a list.

FIRST2(L; a,b) First 2. Returns the first 2 elements of a list.

FIRST3(L; a1,a2,a3) First 3. Returns the first 3 elements of a list.

FIRST4(L; a1,a2,a3,a4) First 4. Returns the first 4 elements of a list.

a <- SECOND(L) Second. Returns the 2nd element of a list.

a <- THIRD(L) Third. Returns the 3rd element of a list.

a <- FOURTH(L) Fourth. Returns the 4th element of a list.

Lp <- LASTCELL(L) Last cell. Returns the list handle of the last cell of a list.

a <- LELTI(A,i) List element. Returns the i-th element of a list.

Lp <- RED(L) Reductum. Returns the reductum of a list.

Lp <- RED2(L) Reductum 2. Returns the 2nd reductum of a list.

M <- RED3(L) Reductum 3. Returns the 3rd reductum of a list.

M <- RED4(L) Reductum 4. Returns the 4th reductum of a list.

B <- REDI(A,i) Reductum. Returns the i-th reductum of a list.

Information and Predicates:

t <- ISOBJECT(a) Test for object. Tests whether the argument represents an object.

t <- ISATOM(a) Test for atom. Tests whether the argument represents an atom.

t <- ISLIST(a) Test for list. Tests whether the argument represents a list.

t <- ISNIL(L) Test for empty list. Tests whether the argument represents the empty
list.

t <- EQUAL(a,b) Equal. Tests whether two objects are equal.

t <- MEMBER(a,L) Membership test. Tests whether an object is an element of a
list.

i <- LSRCH(a,A) List search. Returns the index of an object in a list.

n <- EXTENT(a) Extent.

n <- LENGTH(L) Length.

n <- ORDER(a) Order.

Concatenation:

L <- CCONC(L1,L2) Constructive concatenation. Builds a list (l1, . . . , lm,
lm+1, . . . , ln) from lists (l1, . . . , lm) and (lm+1, . . . , ln).

L <- CONC(L1,L2) Concatenation. Concatenates two lists destructively.

M <- LCONC(L) List concatenation. Concatenates the elements of a list of lists de-
structively.

Inversion:

6

M <- CINV(L) Constructive inverse. Builds a list containing the elements of the
argument in inverse order.

M <- INV(L) Inverse. Inverts a list destructively.

Insertion:

LINS(a,L) List insertion. Inserts an object after the first element of a list.

L <- LEINST(A,i,a) List element insertion. Inserts an object after the i-th element
of a list.

Lp <- SUFFIX(L,b) Suffix. Appends an object after the last element of a list.

B <- LINSRT(a,A) List insertion. Inserts an atom into a sorted list of atoms.

Combinatorial:

M <- LEROT(L,i,j) List element rotation. Rotates some consecutive elements of a
list.

Lp <- LPERM(L,P) List permute. Permutes the elements of a list.

Pp <- PERMCY(P) Permutation, cyclic. Rotates a list to the left.

L <- PERMR(n) Permutation, random. Builds a list of the first n integers in random
order.

B <- LEXNEX(A) Lexicographically next. Computes the lexicographical successor of
a permutation.

Set Operations:

b <- SEQUAL(A,B) Set equality. Tests whether two sets represented as unordered
redundant lists are equal.

C <- SDIFF(A,B) Set difference.

B <- SFCS(A) Set from characteristic set.

C <- SINTER(A,B) Set intersection.

C <- SUNION(A,B) Set union.

C <- USDIFF(A,B) Unordered set difference.

C <- USINT(A,B) Unordered set intersection.

C <- USUN(A,B) Unordered set union.

Sorting:

M <- LBIBMS(L) List of BETA-integers bubble-merge sort. Sorts a list of atoms
into non-descending order.

LBIBS(L) List of BETA-integers bubble sort. Sorts a list of atoms into non-descending
order.

L <- LBIM(L1,L2) List of BETA-integers merge. Merges two sorted lists of atoms.

B <- LINSRT(a,A) List insertion. Inserts an atom into a sorted list of atoms.

C <- LMERGE(A,B) List merge. Constructively merges two lists avoiding duplicate
elements.

Input/Output:

A <- AREAD() Atom read.

AWRITE(A) Atom write.

L <- LREAD() List read.

7

LWRITE(L) List write.

B <- OREAD() Object read.

OWRITE(B) Object write.

Miscellaneous:

C <- PAIR(A,B) Pair. Builds a list by interleaving the elements of two lists.

SFIRST(L,a) Set first element. Sets the first element of a list.

SLELTI(A,i,a) Set list element. Sets the i-th element of a list.

SRED(L,Lp) Set reductum. Sets the reductum of a list.

8

Chapter 3

Arithmetic

3.1 Introduction

3.1.1 Purpose

The SACLIB arithmetic packages support computations with integers, modular numbers,
and rational numbers whose sizes are only bounded by the amount of memory available.

3.1.2 Definitions of Terms

integer Integers to be entered into SACLIB must be of the following external form.

• <digit sequence> or

• + <digit sequence> or

• − <digit sequence> ,

where <digit sequence> designates any non-empty word over the alphabet 0, 1, ..., 9.
Note that there is no blank between the optional sign and the digit sequence; also
note that leading zeros are allowed. Inputs of this form are interpreted in the usual
way as decimal numbers.

SACLIB outputs the canonical external representation of integers. This is the integer
in external form with both positive sign and leading zeros digits supressed.

The internal representation I of a number n ∈ Z is defined as follows:

• If −BETA < n < BETA then I is the atom whose value is n.

• If n ≤ −BETA or BETA ≤ n then I is the list (d0, d1, . . . , dk) with dk 6= 0, di ≤ 0

if n < 0 and 0 ≤ di if 0 < n for 0 ≤ i ≤ k, and n =
∑k

i=0 diBETA
i.

digit, BETA-digit, BETA-integer An atom n with −BETA < n < BETA.

GAMMA-digit, GAMMA-integer An atom n with −γ < n < γ, where γ is the largest integer
which fits into a Word1. (E.g. if the size of a Word is 32 bits, then γ = 231 − 1.)

modular digit An atom n with 0 ≤ n < m, where m is a positive BETA-digit.

modular integer An integer n with 0 ≤ n < m, where m is a positive integer.

symmetric modular An integer n with −
⌊

m
2

⌋

+ 1 ≤ n ≤
⌊

m
2

⌋

, where m is a positive
integer. In the input/output specifications of the corresponding algorithms these are
denoted as elements of Z’ M, as opposed to the notation Z M, which is used for (non-
symmetric) modular integers.

1See Section C.2 for details on the type Word.

9

rational number Rational numbers to be entered into SACLIB must be of the following
external form.

• <integer N > or

• <integer N > / <integer D > ,

where <integer N > and <integer D > are external forms of relatively prime integers
N and D, such that D > 0. Note that no blanks are permitted immediately before and
after the /. Inputs of this form are interpreted in the usual way as rational numbers
with numerator N and denominator D.

SACLIB outputs the canonical external representation of rational numbers r ∈ Q. If
r ∈ Z, the canonical external representation of r is the canonical external representa-
tion of the integer r. Otherwise there are unique integers N and D such that r = N

D ,
D > 1, and gcd(N,D) = 1. The canonical external representation of r in this case is
the canonical external representation of the integer N followed by / followed by the
canonical external representation of the integer D.

The internal representation R of a number r ∈ Q is defined as follows:

• If r = 0 then R is the BETA-digit 0.

• Otherwise, R is the list (N, D), where N and D are the internal representations of
the numerator and the denominator of r, i.e. the unique integers n and d such
that r = n

d , d > 0, and gcd(n, d) = 1.

ceiling of a number r is the smallest integer n such that r ≤ n.

floor of a number r is the largest integer n such that n ≤ r.

positive n is positive if 0 < n.

non-negative n is non-negative if 0 ≤ n.

non-positive n is non-positive if n ≤ 0.

negative n is negative if n < 0.

3.2 Integer Arithmetic

Basic Arithmetic:

C <- ISUM(A,B) Integer sum.

C <- IDIF(A,B) Integer difference.

B <- INEG(A) Integer negation.

C <- IPROD(A,B) Integer product.

C <- IDPR(A,b) Integer-digit product.

DPR(a,b; c,d) Digit Product.

C <- IPRODK(A,B) Integer product, Karatsuba algorithm.

C <- IQ(A,B) Integer quotient.

C <- IDQ(A,b) Integer-digit quotient.

IQR(A,B; Q,R) Integer quotient and remainder.

IDQR(A,b; Q,r) Integer-digit quotient and remainder.

DQR(a1,a0,b; q,r) Digit quotient and remainder.

C <- IREM(A,B) Integer remainder.

10

r <- IDREM(A,b) Integer-digit remainder.

c <- IMAX(a,b) Integer maximum. Returns the greater of two integers.

c <- IMIN(a,b) Integer minimum. Returns the smaller of two integers.

s <- ISIGNF(A) Integer sign function.

B <- IABSF(A) Integer absolute value function.

s <- ICOMP(A,B) Integer comparison. Compares two integers and returns −1, 0,
and +1 in case of <,=, and >, respectively.

t <- IEVEN(A) Integer even. Tests whether the argument is even.

t <- IODD(A) Integer odd. Tests whether the argument is odd.

Exponentiation:

B <- IEXP(A,n) Integer exponentiation.

IROOT(A,n; B,t) Integer root.

ISQRT(A; B,t) Integer square root.

DSQRTF(a; b,t) Digit square root function.

IPOWER(A,L; B,n) Integer power. If the argument can be expressed as bn, such
integers b and n are computed.

Greatest Common Divisor:

C <- IGCD(A,B) Integer greatest common divisor.

c <- DGCD(a,b) Digit greatest common divisor.

IGCDCF(A,B; C,Ab,Bb) Integer greatest common divisor and cofactors.

IEGCD(a,b; c,u1,v1) Integer extended greatest common divisor algorithm.

DEGCD(a,b; c,u,v) Digit extended greatest common divisor.

IDEGCD(a,b; c,u1,v1,u2,v2) Integer doubly extended greatest common divisor
algorithm.

IHEGCD(A,B; C,V) Integer half-extended greatest common divisor.

C <- ILCM(A,B) Integer least common multiple.

Factorization:

F <- IFACT(n) Integer factorization.

s <- ISPT(m,mp,F) Integer selfridge primality test. Returns 1 if the argument is
prime, -1 if it is not prime, and 0 if the primality could not be determined.

ILPDS(n,a,b; p,np) Integer large prime divisor search.

IMPDS(n,a,b; p,q) Integer medium prime divisor search.

ISPD(n; F,m) Integer small prime divisors.

Prime Number Generation:

L <- DPGEN(m,k) Digit prime generator.

Random Number Generation:

A <- IRAND(n) Integer, random.

a <- DRAN() Digit, random.

a <- DRANN() Digit, random non-negative.

11

Combinatorial:

A <- IFACTL(n) Integer factorial.

A <- IBCOEF(n,k) Integer binomial coefficient. Returns
(

n
k

)

.

B <- IBCIND(A,n,k) Integer binomial coefficient induction. Returns
(n
k + 1

)

given

n, k, and
(

n
k

)

.

A <- IBCPS(n,k) Integer binomial coefficient partial sum. Returns
∑k

i=0

(

n
i

)

.

Binary Arithmetic:

n <- ILOG2(A) Integer logarithm, base 2. Returns 1 + (the floor of the base 2
logarithm of the argument).

n <- DLOG2(a) Digit logarithm, base 2.

IFCL2(a; m,n) Integer, floor and ceiling, logarithm, base 2. Returns the floor and
the ceiling of the base 2 logarithm of the argument.

B <- IMP2(A,h) Integer multiplication by power of 2. Multiplies the argument by a
non-negative power of 2.

B <- IDP2(A,k) Integer division by power of 2. Divides the argument by a non-
negative power of 2.

B <- ITRUNC(A,n) Integer truncation. Divides the argument by a positive or nega-
tive power of 2.

n <- IORD2(a) Integer, order of 2. Returns the largest n such that 2n divides the
argument.

Boolean:

c <- DAND(a,b) Digit and. Returns the bit-wise ∧ of two digits.

c <- DOR(a,b) Digit or. Returns the bit-wise ∨ of two digits.

b <- DNOT(a) Digit not. Returns the bit-wise ¬ of a digit.

c <- DNIMP(a,b) Digit non-implication. Returns the bit-wise ¬(a ⇒ b) of digits a
and b.

Input/Output:

A <- IREAD() Integer read.

IWRITE(A) Integer write.

ILWRITE(L) Integer list write. Writes a list of integers in the form
(n1, n2, . . . , nk) to the output stream.

Auxiliary Functions:

C <- ISSUM(n,L) Integer shifted sum. Computes
∑k

i=0 CiBETA
in given n and the

Ci.

ISEG(A,n; A1,A0) Integer segmentation. Splits an integer at a BETA-digit boundary.

C <- IDIPR2(A,B,a,b) Integer digit inner product, length 2. Computes Aa + Bb
for integers A,B and BETA-digits a, b.

C <- ILCOMB(A,B,u,v) Integer linear combination. Computes Aa+Bb for integers
A,B and BETA-digits a, b with Aa+Bb ≥ 0.

DPCC(a1,a2; u,up,v,vp) Digit partial cosequence calculation.

AADV(L; a,Lp) Arithmetic advance. Returns the first element and the reductum of
a non-empty list, returns 0 as the first element if the list is empty.

12

3.3 Modular Number Arithmetic

3.3.1 Modular Digit Arithmetic

Basic Arithmetic:

c <- MDSUM(m,a,b) Modular digit sum.

c <- MDDIF(m,a,b) Modular digit difference.

b <- MDNEG(m,a) Modular digit negative.

c <- MDPROD(m,a,b) Modular digit product.

c <- MDQ(m,a,b) Modular digit quotient.

b <- MDINV(m,a) Modular digit inverse.

b <- MDEXP(m,a,n) Modular digit exponentiation.

Chinese Remainder Algorithm:

a <- MDCRA(m1,m2,mp1,a1,a2) Modular digit chinese remainder algorithm.

L <- MDLCRA(m1,m2,L1,L2) Modular digit list chinese remainder algorithm.

b <- MDHOM(m,A) Modular digit homomorphism. Computes nmodm.

Random Number Generation:

a <- MDRAN(m) Modular digit, random.

3.3.2 Modular Integer Arithmetic

Basic Arithmetic:

C <- MISUM(M,A,B) Modular integer sum.

C <- MIDIF(M,A,B) Modular integer difference.

B <- MINEG(M,A) Modular integer negation.

C <- MIPROD(M,A,B) Modular integer product.

C <- MIQ(M,A,B) Modular integer quotient.

B <- MIINV(M,A) Modular integer inverse.

B <- MIEXP(M,A,N) Modular integer exponentiation.

Chinese Remainder Algorithm:

As <- MIDCRA(M,m,mp,A,a) Modular integer digit chinese remainder algorithm.

As <- MIHOM(M,A) Modular integer homomorphism. Computes nmodm.

Random Number Generation:

R <- MIRAN(M) Modular integer, random.

Conversion:

B <- SMFMI(M,A) Symmetric modular from modular integer. Computes the isomor-
phism from Zm to {−

⌊

m
2

⌋

+ 1, . . . ,
⌊

m
2

⌋

}.

13

3.4 Rational Number Arithmetic

Basic Arithmetic:

T <- RNSUM(R,S) Rational number sum.

T <- RNDIF(R,S) Rational number difference.

S <- RNNEG(R) Rational number negative.

T <- RNPROD(R,S) Rational number product.

T <- RNQ(R,S) Rational number quotient.

S <- RNINV(R) Rational number inverse.

s <- RNSIGN(R) Rational number sign.

S <- RNABS(R) Rational number absolute value.

t <- RNCOMP(R,S) Rational number comparison.

c <- RNMIN(a,b) Rational number min.

c <- RNMAX(a,b) Rational number max.

Constructors:

R <- RNINT(A) Rational number from integer. Returns n
1 given an integer n.

R <- RNRED(A,B) Rational number reduction to lowest terms. Returns n
d given two

integers n and d with d 6= 0.

Selectors:

a <- RNNUM(R) Rational number numerator.

b <- RNDEN(R) Rational number denominator.

Random Number Generation:

R <- RNRAND(n) Rational number, random.

Input/Output:

R <- RNREAD() Rational number read.

RNWRITE(R) Rational number write.

RNDWRITE(R,n) Rational number decimal write. Approximates a rational number
by a decimal fraction with a given accuracy and writes the approximation to the
output stream.

Miscellaneous:

a <- RNCEIL(r) Rational number, ceiling of.

a <- RNFLOR(r) Rational number, floor of.

RNBCR(A,B; M,N,k) Rational number binary common representation.

RNFCL2(a; m,n) Rational number floor and ceiling of logarithm, base 2.

r <- RNP2(k) Rational number power of 2. Computes 2n given a GAMMA-digit n.

14

Chapter 4

Polynomial Arithmetic

4.1 Introduction

4.1.1 Purpose

The SACLIB polynomial arithmetic packages provide functions doing computations with
multivariate polynomials over domains implemented by the SACLIB arithmetic packages.

Except for the functions listed in Section 4.7 and various conversion functions, only the
sparse recursive representation is used.

4.1.2 Definitions of Terms

sparse recursive representation A polynomial p ∈ D[x1, . . . , xr] is interpreted as an el-
ement of (. . . (D[x1]) . . .)[xr], for some domain D. The SACLIB sparse recursive repre-
sentation P of a polynomial p =

∑n
i=1 pix

ei
r with e1 > . . . > en, pi ∈ (. . . (D[x1]) . . .)[xr−1],

and pi 6= 0 is defined recursively as follows:

• If p = 0 then P is the BETA-digit 0.

• If r = 0, then p is in D and its representation P is the representation of elements
of the domain D.

• If r > 0, then P is the list (e1, P1, . . . , en, Pn) where the ei are BETA-digits and
each Pi is the representation of pi.

sparse distributive representation A polynomial p ∈ D[x1, . . . , xr] is interpreted as
p =

∑n
i=1 dix

ei , where di ∈ D, di 6= 0, and xei stands for x
ei,1
1 x

ei,2
2 · · ·x

ei,r
r with

ei,j ≥ 0. Furthermore, we assume that e1 > e2 > . . . > en, where ek > ei iff there
exists a ̂ such that ek,j = ei,j for ̂ < j ≤ r and ek,̂ > ei,̂.

The sparse distributive representation P of such a polynomial p is the list (D1, E1, D2, E2, . . . , Dn, En),
where Di is the SACLIB internal representation of di and Ei is the list (ei,r, ei,r−1, . . . , ei,1)
with ei,j being BETA-digits.

As always in SACLIB, P = 0 if p = 0.

dense recursive representation A polynomial p ∈ D[x1, . . . , xr] is interpreted as an
element of (. . . (D[x1]) . . .)[xr], for some domainD. The dense recursive representation
P of a polynomial p =

∑n
i=0 pix

i
r with pi ∈ (. . . (D[x1]) . . .)[xr−1] is defined recursively

as follows:

• If p = 0 then P is the BETA-digit 0.

• If r = 0, then p is in D and its representation P is the representation of elements
of the domain D.

15

• If r > 0, then P is the list (n, Pn, Pn−1, . . . , P0) where the n is a BETA-digit and
each Pi is the representation of pi.

polynomial If this term appears in the parameter specifications of a function, this denotes
a polynomial in the sparse recursive representation. Otherwise, it is used to denote a
polynomial in arbitrary representation.

base domain, base ring If p is an element of D[x1, . . . , xr], D is its base domain.

integral polynomial A polynomial whose base domain is Z.

modular polynomial A polynomial whose base domain is Zm with m a prime positive
BETA-digit.

modular integral polynomial A polynomial whose base domain is Zm with m a positive
integer.

rational polynomial A polynomial whose base domain is Q.

main variable of a polynomial in D[x1, . . . , xr] is xr.

degree The degree of a polynomial w.r.t. a given variable is the highest power of this vari-
able appearing with non-zero coefficient in the polynomial. If no variable is specified,
the degree is computed w.r.t. the main variable.

order The order of a polynomial p =
∑n

i=0 pix
i
r is the smallest k ≥ 0 such that pk 6= 0.

constant polynomial A polynomial of degree 0 in every variable.

leading term of a polynomial is a polynomial equal to the term of highest degree w.r.t.
the main variable.

reductum of a polynomial is the polynomial minus its leading term.

leading coefficient The leading coefficient of a polynomial is the coefficient of its leading
term.

leading base coefficient An element of the base domain equal to the coefficient of the
leading power product of a polynomial where the ordering on the power products is
the lexicographic ordering with x1 < · · · < xr.

trailing base coefficient An element of the base domain equal to the coefficient of the
smallest power product of a polynomial where the ordering on the power products is
the lexicographic ordering with x1 < · · · < xr.

monic polynomial A polynomial, the leading coefficient of which is 1.

positive polynomial A polynomial, the leading base coefficient of which is positive.

sign An integer equal to 1 if the leading base coefficient of the polynomial is positive, −1
otherwise.

absolute value of a polynomial p is the positive polynomial q such that p = sign(p) · q.

content of a polynomial p is equal to the absolute value of the greatest common divisor of
the coefficients of p.

integer content of an integral polynomial is an integer equal to the positive greatest
common divisor of the integer coefficients of each power product of the polynomial.

primitive polynomial A polynomial, the content of which is 1.

16

squarefree polynomial A polynomial p is squarefree if each factor occurs only once. In
other words, if p = pe11 · · · pekk is a complete factorization of p then each of the ei is
equal to 1.

squarefree factorization The squarefree factorization of p is pe11 · · · pekk where 1 ≤ e1 <
· · · < ek and each of the pi is a positive squarefree polynomial of positive degree. Note
that if p is squarefree then p1 is the squarefree factorization of p.

variable (name) A list (c1, . . . , ck), where the ci are C characters. Example: the name
”fubar” would be represented by the character list (’f’,’u’,’b’,’a’,’r’).

list of variables A list (n1, . . . , nr) giving the names of the corresponding variables of an
r-variate polynomial for input and output.

4.2 Polynomial Input and Output

In this section we will describe the polynomial input and output routines that are available
in SACLIB. Before proceeding further, the reader should be familiar with the internal
representations of polynomials which are discussed in Section 4.1.2.

4.2.1 Recursive polynomials over Z

The external canonical representation of sparse recursive polynomials over Z is defined by
the following rules. First of all, each polynomial is enclosed in parentheses. A term is repre-
sented by the coefficient immediately followed by the variable (no space nor ’*’ in between).
The coefficients +1 and −1 are suppressed unless the exponent of the variable is 0 in which
case the variable is suppressed. The caret ’^’ is used to indicate exponentiation. Exponents
with the value 1 are suppressed and if a variable has the exponent 0 then the variable
is suppressed. These rules apply recursively to the coefficients which may themselves be
polynomials. A few examples are in order.

recursive polynomial external canonical form

−x4 + 2x3 − x+ 3 (-x^4+2x^3-x+3)

(x2 + 1)y3 + (x+ 8)y − 5 ((x^2+1)y^3+(x+8)y+(-5))

−(x2 − 4)y4 + y2 − y − x ((-x^2+4)y^4+(1)y^2+(-1)y+(-x))

Note that a constant polynomial in r variables will be enclosed in r sets of parentheses. For
example, the constant polynomial 2 in 3 variables will be represented in external canonical
form as (((2))).

The algorithm IPREAD reads an r-variate recursive polynomial over Z in external canon-
ical form from the input stream. The polynomial that is read is stored in internal canonical
form and the number of variables is also recorded. The variables are not stored. Integer
coefficients may be of arbitrary length but exponents must be BETA-digits. Since no sort-
ing is performed on the terms, they must be given in order of descending degree. This is
an important remark since almost all algorithms that manipulate polynomials require that
the terms be ordered and violating this rule will undoubtedly cause incorrect results to be
computed and may even crash the system. Another important remark is that terms whose
coefficients are 0 should not be given as these terms will be stored and may cause problems,
for example in equality testing.

Although IPREAD is happiest when a polynomial is given in external canonical form
as exemplified by the previous examples, the user is allowed some freedom. An arbitrary

17

number of spaces may interspersed between the coefficients, the variables, the exponents
and the symbols ’+’, ’-’ and ’^’. Spaces may not be inserted within a variable nor within an
integer. Coefficients with magnitude 1 as well as the exponents 0 and 1 may be explicitly
given. Thus, for example, ((x ^ 2+1) y^3+(1x+8) y^1-(5x^0) y^0) is perfectly valid
and is equivalent to the second example given in the table above.

Since IPREAD was intended to be used mainly for reading output produced by previous
computations, it is designed to be fast and, consequently, very little error checking is per-
formed on the input. Among other things, IPREAD does not check for consistency among
the variables, e.g. ((y)x^2+(z)y) will be accepted as valid input and would be identical
to ((u)v^2+(u)v) in internal representation. Also, IPREAD does not check for consistency
among terms, i.e. each term is processed separately and it is not checked whether all terms
have the same number of recursive nestings. For example, (y^3+(x-1)y) will be accepted
although the first term, y^3, is a univariate polynomial whereas the second, (x-1)y, is a
bivariate polynomial. It is therefore the responsibility of the user to see that polynomials
are input properly.

The algorithm IPWRITE takes as inputs an r-variate recursive polynomial A over Z and
a list V = (v1, . . . , vr) of r variables and writes A to the output stream using the variables
specified with vr as the main variable and v1 as the most minor variable. The list V

may be initialized using VLREAD which reads a variable list from the input stream. For
generating a list with a fixed number of variables one could also use an expression such
as LIST3(LFS("X"),LFS("Y"),LFS("Z")). Here the functions LFS is used for converting
a C string to a SACLIB variable. It is possible to use the algorithm IUPWRITE to write
univariate recursive polynomials but this algorithm was intended mainly as a subroutine
to be called by IPWRITE, which also handles univariate polynomials, and the user need not
even be aware of its existence.

There is an additional set of input functions of which the top level function is IPEXPREAD.
The format accepted by this function is a bit more convenient as expressions may be of the
form (3 X Y^2 + X)^3 - (Y X + Y) (X - 1)^2 + 5. Note that IPEXPREAD also takes a
variable list as input and therefore can detect the order of the variables without requiring
the recursive structure made explicit by parentheses.

To be more precise, IPEXPREAD accepts any polynomial expression built from integers
and variables using +, -, blanks for multiplication, ˆ for exponentiation, and parenthesis for
grouping. The expression may be terminated by any character not being part of the legal
input set (e.g. a period, a semicolon, etc.). This terminating character is not removed from
the input stream.

The function IPEXPREADR has the same specification as IPEXPREAD, with the difference
that it does remove the terminating character.

4.2.2 Recursive polynomials over Q

For r-variate recursive polynomials over Q the algorithms RPREAD and
RPWRITE are the corresponding input and output routines. The situation for rational poly-
nomials is essentially the same as that for integral polynomials with the exception that the
base coefficients may be rational numbers. The same freedoms on valid input apply and
an arbitrary number of spaces may be inserted before and after ’/’. If the denominator
of a base coefficient is 1 then only the numerator is in the external canonical represen-
tation. As an example, the external canonical representation of 2

7x
3 − 65x2 + 5x + 12

4 is
(2/7x^3-65x^2+5x+12/4) which, among many other possible variations, may be input as
(2/7x^ 3- 65 x^2 + 5/1x+12/ 4). It should be noted that the rational base coefficients
are not reduced to lowest terms when converted to internal representation. Corresponding
to IUPWRITE is RUPWRITE which, again, need not concern the user.

For rational polynomials there are also input functions for reading polynomial expres-
sions. Here the name of the top level function is RPEXPREAD. The input format here is the
same as in the integral case, except that numbers may be rational.

18

4.2.3 Distributive polynomials over Z

The external canonical representation of sparse distributive polynomials over Z is as follows.
The entire polynomial is enclosed in parentheses. Each term is made up of the integer
coefficient followed by the variables having positive exponents with each variable separated
from its corresponding exponent by a caret. The coefficient and each variable-exponent
pair is separated by a single space. As was the case for recursive polynomials, coefficients
and exponents with a magnitude of 1 are suppressed as are variables with exponent 0. For
example, the polynomial 2x3y5 − xy3 − 4y + x + 1 will be expressed in external canonical
form as (2 x^3 y^5 - x y^3 -4 y + x +1).

The algorithms DIIPREAD and DIIPWRITE are the input and output routines for distribu-
tive polynomials over Z. DIIPREAD takes as input a variable list V = (v1, . . . , vr) and reads
a distributive polynomial in external canonical form from the input stream. The ordering
of the variables in V is significant and the variables in each term of the polynomial that is
read must appear in the same order that they appear in V and the terms must be ordered in
descending degree in vr. For example, if V = (x,y,z) then (4 z^5 - y^2 z^4 + 9 x y z)

is valid but (4 z^5 + 9 y x z - y^2 z^4) is not for two reasons—first, y appears before
x in the term 9 y x z and second, the term 9 y x z appears before - y^2 z^4 which
violates the rule that terms must appear in order of descending degree in z. Additionally,
if there are two terms with the same degree in vr then they should be ordered according
to descending degree in vr−1 and so on. Coefficients may be separated from the variables
by an arbitrary number of spaces (including no space at all). Variables must be separated
by at least one space if there is no exponent explicitly given, otherwise an arbitrary num-
ber of spaces may separate them. For example (4z^5 - y^2z^4 + 9x y z) is valid but
(4z^5 - y^2z^4 + 9xyz) is not since xyz will be treated as a single variable.

4.2.4 Distributive polynomials over Q

Distributive polynomials over Q may be read in and written out using the algorithms
DIRPREAD and DIRPWRITE. The only difference between rational distributive polynomials
and integral distributive polynomials is that the base coefficients may be rational numbers
and not just integers. It should be clear after reading the preceding subsections what
constitutes valid input and we will not discuss this matter further.

4.2.5 Conversion Between Recursive and Distributive

Representation

Converting recursive polynomials to distributive polynomials can be achieved by using
DIPFP which, given a polynomial in recursive internal representation, computes an equiv-
alent one in distributive internal representation. In the other direction, namely to convert
from distributive to recursive representation, the algorithm PFDIP is provided. Both DIPFP

and PFDIP work for polynomials over either Z or Q but the number of variables must be
specified. For example, if A is a polynomial over Q in internal recursive representation and
the user wants to display A in external distributive representation then the code

DIRPWRITE(r,DIPFP(r,A),V);

where r is equal to the number of variables and V is a list of r variables, will suffice.

4.2.6 Polynomials over Zm

The input and output routines for polynomials over Z work equally well for polynomials
over Zm.

19

4.3 Domain Independent Polynomial Arithmetic

Constructors:

A <- PFBRE(r,a) Polynomial from Base Ring Element. Builds an r-variate polyno-
mial from an element of some domain.

A <- PMON(a,e) Polynomial monomial. Builds axe from a and e.

A <- PBIN(a1,e1,a2,e2) Polynomial binomial. Builds a1x
e1+a2x

e2 from a1, a2, e1,
and e2.

Selectors:

a <- PLDCF(A) Polynomial leading coefficient. Returns the leading coefficient w.r.t.
the main variable.

B <- PRED(A) Polynomial reductum. Returns the reductum (the polynomial minus
its leading term) w.r.t. the main variable.

a <- PLBCF(r,A) Polynomial leading base coefficient. Returns the coefficient of the
term of the highest degree w.r.t. all variables (an element of the base domain).

a <- PTBCF(r,A) Polynomial trailing base coefficient. Returns the coefficient of the
term of the lowest degree w.r.t. all variables (an element of the base domain).

Information and Predicates:

n <- PDEG(A) Polynomial degree. Returns the degree of the argument w.r.t. the
main variable.

n <- PMDEG(A) Polynomial modified degree. Returns the degree of the argument,
−1 if the argument is 0.

n <- PDEGSV(r,A,i) Polynomial degree, specified variable. Returns the degree of
the argument w.r.t. the i-th variable.

V <- PDEGV(r,A) Polynomial degree vector. Returns a list (d1, . . . , dr) where di is
the degree of argument w.r.t. the i-th variable.

b <- PCONST(r,A) Polynomial constant. Tests whether the argument is a constant
polynomial.

b <- PUNT(r,A) Polynomial univariate test. Tests whether the argument is a uni-
variate polynomial.

k <- PORD(A) Polynomial order. Returns the smallest exponent appearing in the
argument polynomial (w.r.t. the main variable).

Transformation:

B <- PSDSV(r,A,i,n) Polynomial special decomposition, specified variable. Com-

putes p(x1, . . . , x
1/n
i , . . . , xr) given p, i, n, and r.

B <- PDPV(r,A,i,n) Polynomial division by power of variable. Computes x−n
i p

given p, i, and n.

B <- PMPMV(A,k) Polynomial multiplication by power of main variable. Computes
xnp given p and n, with x being the main variable of p.

B <- PRT(A) Polynomial reciprocal transformation. Computes xnp(x−1) with n =
deg(p).

B <- PDBORD(A) Polynomial divided by order. Computes x−np where n is the order
of p.

20

Conversion1:

B <- PFDIP(r,A) Polynomial from distributive polynomial. Computes a polynomial
in the sparse recursive representation from a polynomial in the sparse distributive
representation.

B <- PFDP(r,A) Polynomial from dense polynomial. Computes a polynomial in the
sparse recursive representation from a polynomial in the dense recursive repre-
sentation.

Miscellaneous:

B <- PINV(r,A,k) Polynomial introduction of new variables. Computes a polyno-
mial in R[y1, . . . , ys, x1, . . . , xr] from a polynomial in R[x1, . . . , xr].

B <- PPERMV(r,A,P) Polynomial permutation of variables. Computes a polynomial
in R[xp1

, . . . , xpr
] from a polynomial in R[x1, . . . , xr], where (p1, . . . , pr) is a

permutation of (1, . . . , r).

B <- PCPV(r,A,i,j) Polynomial cyclic permutation of variables.

B <- PICPV(r,A,i,j) Polynomial inverse cyclic permutation of variables.

B <- PTV(r,A,i) Polynomial transpose variables.

B <- PTMV(r,A) Polynomial transpose main variables.

B <- PUFP(r,A) Polynomial, univariate, from polynomial. Computes a univariate
polynomial from an r-variate polynomial by substituting 0 for all variables except
the main variable xr.

L <- PCL(A) Polynomial coefficient list. Returns a list (pn, . . . , p0) where n is the
degree of p and the pi are the coefficients of p.

4.4 Integral Polynomial Arithmetic

Basic arithmetic:

C <- IPSUM(r,A,B) Integral polynomial sum.

C <- IPDIF(r,A,B) Integral polynomial difference.

B <- IPNEG(r,A) Integral polynomial negative.

C <- IPPROD(r,A,B) Integral polynomial product.

C <- IPIP(r,a,B) Integral polynomial integer product. Computes c ∗ p given an
integer c and an integral polynomial p.

C <- IPP2P(r,B,m) Integral polynomial power of 2 product.

IPQR(r,A,B; Q,R) Integral polynomial quotient and remainder.

C <- IPQ(r,A,B) Integral polynomial quotient.

C <- IPIQ(r,A,b) Integral polynomial integer quotient. Computes p/c given an
integral polynomial p and an integer c.

C <- IPPSR(r,A,B) Integral polynomial pseudo-remainder.

IUPSR(A,B; ab,bb,C) Integral univariate polynomial semi-remainder.

B <- IPEXP(r,A,n) Integral polynomial exponentiation.

s <- IPSIGN(r,A) Integral polynomial sign.

B <- IPABS(r,A) Integral polynomial absolute value.

1See Section 4.7 for a description of the sparse distributive and the dense recursive representations.

21

Differentiation and Integration:

B <- IPDMV(r,A) Integral polynomial derivative, main variable.

B <- IPDER(r,A,i) Integral polynomial derivative. Computes the derivative of the
argument w.r.t. the i-th variable.

B <- IPHDMV(r,A,k) Integral polynomial higher derivative, main variable. Com-
putes the k-th derivative of the argument w.r.t. the main variable.

B <- IPINT(r,A,b) Integral polynomial integration. Computes the integral of the
argument w.r.t. the main variable.

Substitution and Evaluation:

C <- IPSMV(r,A,B) Integral polynomial substitution for main variable. Substitutes
an integral polynomial for the main variable of an integral polynomial.

C <- IPSUB(r,A,i,B) Integral polynomial substitution. Substitutes an integral poly-
nomial for the i-th variable of an integral polynomial.

C <- IPGSUB(r,A,s,L) Integral polynomial general substitution. Substitutes an in-
tegral polynomials for all variables of an integral polynomial.

B <- IUPQS(A) Integral univariate polynomial quotient substitution.

B <- IPEMV(r,A,a) Integral polynomial evaluation of main variable. Substitutes a
constant for the main variable of an integral polynomial.

B <- IPEVAL(r,A,i,a) Integral polynomial evaluation. Substitutes a constant for
the i-th variable of an integral polynomial.

b <- IUPBEI(A,c,m) Integral univariate polynomial binary rational evaluation, in-
teger output.

s <- IUPBES(A,a) Integral univariate polynomial binary rational evaluation of sign.

b <- IUPBRE(A,a) Integral univariate polynomial binary rational evaluation.

B <- IPBEILV(r,A,c,k,m) Integral polynomial binary rational evaluation, integral
polynomial result, leading variable.

B <- IPBREI(r,A,i,c) Integral polynomial binary rational evaluation, integral poly-
nomial result.

Transformation:

B <- IPTRMV(r,A,h) Integral polynomial translation, main variable. Computes
p(x+ h) given p and h, where x is the main variable of p.

B <- IPTRAN(r,A,T) Integral polynomial translation. Computes p(x1+t1, . . . , xr+
tr) given p and the ti.

B <- IPBHT(r,A,i,k) Integral polynomial binary homothetic transformation.

B <- IPBHTLV(r,A,k) Integral polynomial binary homothetic transformation, lead-
ing variable.

B <- IPBHTMV(r,A,k) Integral polynomial binary homothetic transformation, main
variable.

B <- IUPBHT(A,k) Integral univariate polynomial binary homothetic transforma-
tion.

B <- IUPIHT(A,n) Integral univariate polynomial integer homothetic transforma-
tion.

B <- IPNT(r,A,i) Integral polynomial negative transformation.

B <- IUPNT(A) Integral univariate polynomial negative transformation.

22

B <- IPTR(r,A,i,h) Integral polynomial translation, specified variable.

B <- IUPTR(A,h) Integral univariate polynomial translation.

B <- IPTR1(r,A,i) Integral polynomial translation by 1, specified variable. speci-
fied variable.

B <- IPTRLV(r,A) Integral polynomial translation, leading variable.

B <- IPTR1LV(r,A) Integral polynomial translation by 1, leading variable.

B <- IUPTR1(A) Integral univariate polynomial translation by 1.

Predicates:

t <- IPCONST(r,A) Integral polynomial constant. Tests whether the argument is a
constant.

t <- IPONE(r,A) Integral polynomial one. Tests whether the argument is 1.

Random Polynomial Generation:

A <- IPRAN(r,k,q,N) Integral polynomial, random.

Conversion:

IPSRP(r,A; a,Ab) Integral polynomial similiar to rational polynomial. Given a
rational polynomial q, computes a rational number c and an integral polynomial
p with cp = q.

B <- IPFRP(r,A) Integral polynomial from rational polynomial. Computes an in-
tegral polynomial from a rational polynomial whose base coefficients are integers.

Input/Output:

IPREAD(; r,A) Integral polynomial read.

IPEXPREAD(r,V; A,t) Integral polynomial expression read.

IPWRITE(r,A,V) Integral polynomial write.

IPDWRITE(r,A,V) Integral Polynomial Distributive Write. Writes an integral recur-
sive polynomial in distributive form.

Contents and Primitive Parts:

IPICPP(r,A; a,Ab) Integral polynomial integer content and primitive part.

c <- IPIC(r,A) Integral polynomial integer content.

Ab <- IPIPP(r,A) Integral polynomial integer primitive part.

d <- IPICS(r,A,c) Integral polynomial integer content subroutine.

IPSCPP(r,A; s,C,Ab) Integral polynomial sign, content, and primitive part. Com-
putes the sign, content and primitive part of the argument w.r.t. the main vari-
able.

IPCPP(r,A; C,Ab) Integral polynomial content and primitive part.

C <- IPC(r,A) Integral polynomial content.

Ab <- IPPP(r,A) Integral polynomial primitive part.

IPLCPP(r,A; C,P) Integral polynomial list of contents and primitive parts.

Polynomial Norms:

b <- IPSUMN(r,A) Integral polynomial sum norm.

b <- IPMAXN(r,A) Integral polynomial maximum norm.

23

Chinese Remainder Algorithm:

As <- IPCRA(M,m,mp,r,A,a) Integral polynomial chinese remainder algorithm.

Squarefree Factorization:

L <- IPSF(r,A) Integral polynomial squarefree factorization.

L <- IPFSD(r,A) Integral polynomial factorization, second derivative.

L <- IPSFSD(r,A) Integral squarefree factorization, second derivative.

Computations in Ideals:

B <- IPTRUN(r,D,A) Integral polynomial truncation. Computes pmod (xd1

1 , . . . , xdr
r)

given p and the di.

C <- IPTPR(r,D,A,B) Integral polynomial truncated product. Computes pqmod
(xd1

1 , . . . , xdr
r) given p, q, and the di.

B <- IPIHOM(r,D,A) Integral polynomial mod ideal homomorphism. Computes
pmod

(xd1

1 , . . . , x
dr−1

r−1) given an r-variate polynomial p and the di.

C <- IPIPR(r,D,A,B) Integral polynomial mod ideal product. Computes pqmod

(xd1

1 , . . . , x
dr−1

r−1) given r-variate polynomials p and q and the di.

C <- IUPTPR(n,A,B) Integral univariate polynomial truncated product. Computes
pqmodxn given univariate polynomials p and q and a BETA-digit n.

4.5 Modular Polynomial Arithmetic

Note that the functions whose names begin with MI are based upon modular integer arith-
metic, while those beginning with MP and MUP are based upon modular digit arithmetic
with a prime modulus2.

Basic arithmetic:

C <- MIPSUM(r,M,A,B) Modular integral polynomial sum.

C <- MPSUM(r,m,A,B) Modular polynomial sum.

C <- MIPDIF(r,M,A,B) Modular integral polynomial difference.

C <- MPDIF(r,m,A,B) Modular polynomial difference.

B <- MIPNEG(r,M,A) Modular integral polynomial negation.

B <- MPNEG(r,m,A) Modular polynomial negative.

C <- MIPPR(r,M,A,B) Modular integral polynomial product.

C <- MPPROD(r,m,A,B) Modular polynomial product.

B <- MPUP(r,m,c,A) Modular polynomial univariate product.

C <- MPMDP(r,p,a,B) Modular polynomial modular digit product.

C <- MIPIPR(r,M,D,A,B) Modular integral polynomial mod ideal product.

MIUPQR(M,A,B; Q,R) Modular integral univariate polynomial quotient and remain-
der.

MPQR(r,p,A,B; Q,R) Modular polynomial quotient and remainder.

C <- MPQ(r,p,A,B) Modular polynomial quotient.

C <- MPUQ(r,p,A,b) Modular polynomial univariate quotient.

2See Section 3.3 for details on modular digit and integer arithmetic.

24

C <- MPPSR(r,p,A,B) Modular polynomial pseudo-remainder.

MMPIQR(r,M,D,A,B; Q,R) Modular monic polynomial mod ideal quotient and re-
mainder.

B <- MPEXP(r,m,A,n) Modular polynomial exponentiation.

Differentiation and Integration:

B <- MUPDER(m,A) Modular univariate polynomial derivative.

Contents and Primitive Parts:

MPUCPP(r,p,A; a,Ab) Modular polynomial univariate content and primitive part.

c <- MPUC(r,p,A) Modular polynomial univariate content.

Ab <- MPUPP(r,p,A) Modular polynomial univariate primitive part.

d <- MPUCS(r,p,A,c) Modular polynomial univariate content subroutine.

Evaluation:

B <- MPEMV(r,m,A,a) Modular polynomial evaluation of main variable.

B <- MPEVAL(r,m,A,i,a) Modular polynomial evaluation.

Transformation:

Ap <- MPMON(r,p,A) Modular polynomial monic. Computes the monic polynomial
similar to a given modular polynomial.

Chinese Remainder Algorithm:

As <- MPINT(p,B,b,bp,r,A,A1) Modular polynomial interpolation.

B <- MIPHOM(r,M,A) Modular integral polynomial homomorphism. Computes the
homomorphism from Z[x1, . . . , xr] to Zm[x1, . . . , xr].

B <- MPHOM(r,m,A) Modular polynomial homomorphism.

Squarefree Factorization:

L <- MUPSFF(p,A) Modular univariate polynomial squarefree factorization.

Random Polynomial Generation:

A <- MIPRAN(r,M,q,N) Modular integral polynomial, random.

A <- MPRAN(r,m,q,N) Modular polynomial, random.

A <- MUPRAN(p,n) Modular univariate polynomial, random.

Conversion:

B <- MIPFSM(r,M,A) Modular integral polynomial from symmetric modular.

B <- SMFMIP(r,M,A) Symmetric modular from modular integral polynomial.

25

4.6 Rational Polynomial Arithmetic

Basic arithmetic:

C <- RPSUM(r,A,B) Rational polynomial sum.

C <- RPDIF(r,A,B) Rational polynomial difference.

B <- RPNEG(r,A) Rational polynomial negative.

C <- RPPROD(r,A,B) Rational polynomial product.

C <- RPRNP(r,a,B) Rational polynomial rational number product.

RPQR(r,A,B; Q,R) Rational polynomial quotient and remainder.

Differentiation and Integration:

B <- RPDMV(r,A) Rational polynomial derivative, main variable.

B <- RPIMV(r,A) Rational polynomial integration, main variable.

Evaluation:

C <- RPEMV(r,A,b) Rational polynomial evaluation, main variable.

Conversion:

B <- RPFIP(r,A) Rational polynomial from integral polynomial.

B <- RPMAIP(r,A) Rational polynomial monic associate of integral polynomial.

Input/Output:

RPREAD(; r,A) Rational polynomial read.

RPEXPREAD(r,V; A,t) Rational polynomial expression read.

RPWRITE(r,A,V) Rational polynomial write.

RPDWRITE(r,A,V) Rational Polynomial Distributive Write.

Normalization:

RPBLGS(r,A; a,b,s) Rational polynomial base coefficients least common multiple,
greatest common divisor, and sign.

4.7 Miscellaneous Representations

4.7.1 Sparse Distributive Representation

Conversion3:

B <- DIPFP(r,A) Distributive polynomial from polynomial. Computes a polyno-
mial in sparse distributive representation from a polynomial in the sparse recur-
sive representation.

B <- PFDIP(r,A) Polynomial from distributive polynomial. Computes a polynomial
in the sparse recursive representation from a polynomial in the sparse distributive
representation.

Input/Output:

A <- DIIPREAD(V) Distributive integral polynomial read.

3See Section 4.1 for a description of the sparse recursive representation.

26

DIIPWRITE(r,A,V) Distributive integral polynomial write.

A <- DIRPREAD(V) Distributive rational polynomial read.

DIRPWRITE(r,A,V) Distributive rational polynomial write.

Miscellaneous:

n <- DIPDEG(r,A) Distributive polynomial degree.

DIPINS(a,d,A; t,B) Distributive polynomial, insert term.

4.7.2 Dense Recursive Representation

Basic arithmetic:

C <- DMPPRD(r,m,A,B) Dense modular polynomial product.

C <- DMPSUM(r,m,A,B) Dense modular polynomial sum.

C <- DMUPNR(p,A,B) Dense modular univariate polynomial natural remainder.

Conversion4:

B <- DPFP(r,A) Dense polynomial from polynomial. Computes a polynomial in
dense recursive representation from a polynomial in the sparse recursive repre-
sentation.

B <- PFDP(r,A) Polynomial from dense polynomial. Computes a polynomial in the
sparse recursive representation from a polynomial in the dense recursive repre-
sentation.

4See Section 4.1 for a description of the sparse recursive representation.

27

Chapter 5

Linear Algebra

5.1 Mathematical Preliminaries

A matrix A of order m× n over a domain D is a rectangular array of elements of D of the
form

A =

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
am1 am2 · · · amn

which we will sometimes denote by A = (aij). If A has order n× n then we say that A is a
square matrix. When appropriate, we will denote a matrix A by Am×n to indicate that the
order of A is m× n.

If A is a square matrix then the determinant of A, denoted det(A), is defined to be
det(A) =

∑

ǫ(σ)aσ(1),1 · · · aσ(n),n, the sum being taken over all permutations σ of {1, . . . , n}
with ǫ(σ) equal to the sign1 of σ.

An m-vector V is a matrix of order m × 1 and will be denoted by V = (vi). If A is a
matrix of order m × n, b is an m-vector and x is an n-vector then the equation Ax = b
can be viewed as representing the system of linear equations

∑n
j=1 aijxj = bi, i = 1, . . . ,m.

If a solution to the system Ax = b exists then we say that the system is consistent. The
null space of a matrix Am×n is the set of all n-vectors x that satisfy Ax = 0. A basis B
for the null-space of A is a set of n-vectors such that each element of the null-space can be
expressed as a linear combination of elements of B.

5.2 Purpose

The SACLIB linear algebra package provides algorithms for solving systems of linear dio-
phantine equations, for computing null-space bases, for computing determinants and for
matrix multiplication.

5.3 Methods and Algorithms

To solve a system of linear diophantine equations one may use either of the two algorithms
LDSMKB and LDSSBR. Both algorithms take as inputs a matrix Am×n and an m-vector b, with
A represented column-wise, i.e. A is a list of n columns each of which is a list of m integers.
Either algorithm returns an n-vector x∗ and a list N where x∗ is a particular solution of

1If σ is the product of m transpositions, then the sign of σ is ǫ(σ) = (−1)m.

28

the system of linear diophantine equations Ax = b and N is a list of n-vectors that form a
basis for the null space of A. In case the system Ax = b is not consistent, both x∗ and N
are null lists. LDSMKB implements a modification of the Kannan-Bachem algorithm while
LDSSBR implements an algorithm based on ideas of Rosser.

Determinants of matrices over Z[x1, . . . , xr] may be computed by using either MAIPDE
or MAIPDM. MAIPDE implements an algorithm which is based on exact division while MAIPDM
is based on modular homomorphisms and Chinese remaindering.

MMDDET computes determinants of matrices over Zp while MMPDMA, which is based on
evaluation homomorphisms and interpolation, computes determinants of matrices over
Zp[x1, . . . , xr].

5.4 Functions

Systems of linear equations:

LDSMKB(A,b; xs,N) Linear diophantine system solution, modified Kannan and Bachem
algorithm. Given an integral matrix Am×n, represented column-wise, and an in-
tegral m-vector b, uses a modification of the Kannan and Bachem algorithm to
compute x∗ and N where x∗ is a particular solution of the system of linear equa-
tions Ax = b and N is a list of vectors which form a basis for the solution module
of Ax = 0. If Ax = b is not consistent then both x∗ and N are null lists.

LDSSBR(A,b; xs,N) Linear diophantine system solution, based on Rosser ideas.
Similar to LDSMKB but the computations are performed using an algorithm
based on ideas of Rosser.

B <- MMDNSB(p,M) Matrix of modular digits null-space basis. Given a matrix Am×n

over Zp, represented row-wise, computes a list B = (B1, . . . , br) of m-vectors
representing a basis for the null-space of A.

Determinants:

D <- MAIPDE(r,M) Matrix of integral polynomials determinant, exact division algo-
rithm. Given a square matrix A over Z computes det(A).

D <- MAIPDM(r,M) Matrix of integral polynomials determinant, modular algorithm.
Similar to MAIPDE but uses an algorithm based on modular homomorphisms and
Chinese remaindering.

d <- MMDDET(p,M) Matrix of modular digits determinant. Given a square matrix A
over Zp, computes det(M).

D <- MMPDMA(r,p,M) Matrix of modular polynomials determinant, modular algo-
rithm. Given a matrix M over Zp[x1, . . . , xr], computes det(M) using a method
based on evaluation homomorphisms and interpolation.

Matrix arithmetic:

C <- MAIPP(r,A,B) Matrix of integral polynomials product.

Vector computations:

B <- VIAZ(A,n) Vector of integers, adjoin zeros.

C <- VIDIF(A,B) Vector of integers difference.

W <- VIERED(U,V,i) Vector of integers, element reduction.

C <- VILCOM(a,b,A,B) Vector of integers linear combination.

B <- VINEG(A) Vector of integers negation.

29

C <- VISPR(a,A) Vector of integers scalar product.

C <- VISUM(A,B) Vector of integers sum.

VIUT(U,V,i; Up,Vp) Vector of integers, unimodular transformation.

Miscellaneous functions:

B <- MAIPHM(r,m,A) Matrix of integral polynomials homomorphism.

B <- MIAIM(A) Matrix of integers, adjoin identity matrix.

B <- MICINS(A,V) Matrix of integers column insertion.

B <- MICS(A) Matrix of integers column sort.

B <- MINNCT(A) Matrix of integers, non-negative column transformation.

B <- MMPEV(r,m,A,k,a) Matrix of modular polynomials evaluation.

30

Chapter 6

Polynomial GCD and

Resultants

6.1 Mathematical Preliminaries

Given polynomials A and B in R[x1, . . . , xr], R a unique factorization domain, a greatest
common divisor (GCD) of A and B is a polynomial C in R[x1, . . . , xr] such that C divides
both A and B and such that any other divisor of both A and B also divides C. GCDs of
more than two polynomials are defined in a similar way. GCDs are not unique since any
unit multiple of a GCD is itself a GCD. Polynomials A and B are relatively prime if 1 is a
GCD of A and B.

If A =
∑m

i=0 aix
i
r and B =

∑n
i=0 bix

i
r, then the Sylvester matrix of A and B is the

(m+ n)× (m+ n) square matrix

am am−1 · · · · · · a0 0 · · · 0
0 am · · · · · · a1 a0 · · · 0
...

. . .
. . .

...
0 · · · 0 am · · · · · · a1 a0
bn bn−1 · · · · · · b0 0 · · · · · · 0
0 bn · · · · · · b1 b0 0 · · · 0
...

. . .
. . .

...
...

. . .
. . .

...
0 · · · · · · 0 bn · · · · · · b1 b0

in which there are n rows of A coefficients and m rows of B coefficients.
The resultant of two polynomials A and B, denoted by res(A,B), is the determinant

of the Sylvester matrix of A and B. The resultant will be an element of R[x1, . . . , xr−1] if
A and B are elements of R[x1, . . . , xr]. From a classic result we know that A and B are
relatively prime just in case their resultant is nonzero.

Let degxr
(A) = m and degxr

(B) = n, with m ≥ n > 0. If M is the Sylvester matrix of
A and B, then for 0 ≤ i ≤ j < n define Mij to be the matrix obtained by deleting from M
the last j rows of the A coefficients, the last j rows of the B coefficients and the last 2j +1
columns except column m+ n− i− j. The j-th subresultant of A and B is the polynomial
Sj(xr) =

∑j
i=0 det(Mij)x

i
r for 0 ≤ j < n. Note that S0 is simply res(A,B). The k-th

principal subresultant coefficient of A and B is the coefficient of xk
r in Sk (which may be 0).

A and B are similar, denoted A ∼ B, if there exist a and b, elements of R[x1, . . . , xr−1],
such that aA = bB. If A and B are nonzero and degxr

(A) ≥ degxr
(B) then a polynomial

31

remainder sequence (PRS) of A and B is a sequence A1, . . . , An of nonzero polynomials
such that A1 = A, A2 = B, Ai ∼ prem(Ai−2, Ai−1), for i = 3, . . . , n, and degxr

(An) = 0.1

Since there are many polynomials similar to a given one, there are many different PRSs
A1, A2, . . . , An corresponding to A and B.

The Euclidean PRS is obtained by setting Ai = prem(Ai−2, Ai−1) for i = 3, . . . , n.
The primitive PRS is obtained by setting Ai = prem(Ai−2, Ai−1)/gi, where gi is the

content of prem(Ai−2, Ai−1). In other words, we set Ai to be equal to the primitive part of
prem(Ai−2, Ai−1).

The subresultant PRS of the first kind is obtained by setting Ai = Sdi−1−1 where di is
the degree of the i-th element of any PRS of A and B. [For each i, di is invariant over the
set of PRSs of A and B.]

The subresultant PRS of the second kind is obtained by setting Ai = Sdi
where di is as

in the previous definition.
The reduced PRS is obtained by setting Ai = prem(Ai−2, Ai−1)/c

δi+1
i , where ci =

ldcf(Ai−2) and δi = degxr
(Ai−3)− degxr

(Ai−2) for 3 ≤ i ≤ n, with δ3 = 0.
Although it is not immediately clear from the definitions, both subresultant PRSs as

well as the reduced PRS can be shown to be, in fact, PRSs.
For univariate polynomials over a field we may define what is known as the natural PRS

defined by Ai = Ai−2 −QiAi−1, deg(Ai) < deg(Ai−1), for i = 3, . . . , n. That is, we take Ai

to be the remainder obtained from dividing Ai−2 by Ai−1.

6.2 Purpose

The SACLIB polynomial GCD and resultant package provides algorithms for the calculation
of GCDs of r-variate polynomials over R = Z or R = Zp. Since GCDs are not unique, we
will need to specify a canonical form in which to express the results of the computations.
Over R = Z, the positive GCD is computed while over R = Zp it is the monic GCD that is
computed. Henceforth, if we refer to the GCD of A and B we will mean the GCD defined
by the algorithms and this will be denoted by gcd(A,B).

Algorithms are also available for the computation of resultants of r-variate polynomials
over R = Z or R = Zp. The package also provides algorithms for computing the subresultant
PRS and the reduced PRS for r-variate polynomials over R = Z and the subresultant PRS
for r-variate polynomials over R = Zp.

6.3 Definitions of Terms

coarsest squarefree basis If A = (A1, . . . , An) is a list of r-variate polynomials, a coars-
est squarefree basis for A is a list B = (B1, . . . , Bm) of pairwise relatively prime
squarefree r-variate polynomials such that each Ai in A can be expressed as the prod-
uct of powers of elements of B.

discriminant If A is an r-variate polynomial of degree n in its main variable, n ≥ 2,
the discriminant of A is the (r − 1)-variate polynomial equal to the quotient of
(−1)n(n−1)/2res(A,A′) when divided by a, where A′ is the derivative of A with respect
to its main variable and a is the leading coefficient of A.

finest squarefree basis A finest squarefree basis B = (B1, . . . , Bm) for a list A of r-
variate polynomials is a coarsest squarefree basis for A with the additional condition
that each Bi is irreducible.

cofactors If C is the GCD of two polynomials A and B then the cofactors of A and B,
respectively, are A/C and B/C.

1prem(F,G) denotes the pseudo-remainder of F when pseudo-divided by G with respect to the main
variable xr.

32

content The content of a polynomial A in r variables is a polynomial in r − 1 variables
equal to the absolute value of the greatest common divisor of the coefficients of A.

greatest squarefree divisor A greatest squarefree divisor of a polynomial A is a square-
free polynomial C that divides A and is such that any other squarefree polynomial
that divides A also divides C.

primitive part The primitive part of a polynomial A is the absolute value of A/c where
c is the content of A.

primitive polynomial A polynomial, the content of which is 1.

squarefree factorization The squarefree factorization of A is A = Ae1
1 · · ·Aek

k where 1 ≤
e1 < · · · < ek and each of the Ai is a positive squarefree polynomial of positive degree.
Note that if A is squarefree then A1 is the squarefree factorization of A.

squarefree polynomial A polynomial A is squarefree if each factor occurs only once. In
other words, if A = Ae1

1 · · ·Aek
k is a complete factorization of A then each of the ei is

equal to 1.

univariate content If A is an r-variate polynomial, r ≥ 2, then the univariate content
of A is a univariate polynomial in the most minor variable equal to the GCD of the
coefficients of A, where A is considered as an element of (R[x1])[x2, . . . , xr].

univariate primitive part Given an r-variate polynomial A, r ≥ 2, the univariate prim-
itive part of A is the r-variate polynomial A/a, where a is the univariate content of
A.

6.4 Methods and Algorithms

In this section we briefly discuss the main algorithms that might be of interest to the user
and give a sketch of the mathematical ideas behind these algorithms.

6.4.1 GCD Computations

To compute the GCD of two univariate polynomials over R = Zp, the algorithm MUPGCD

may be used. Making use of the fact that if A1, . . . , An is a PRS of two polynomials A and
B then gcd(A,B) ∼ An, this algorithm simply computes the natural PRS of the two input
polynomials and returns the monic GCD.

The GCD and cofactors of two r-variate polynomials over Zp are computed by MPGCDC

which employs evaluation homomorphisms and interpolation to reduce the problem to that
of computing the GCDs of (r − 1)-variate polynomials over R = Zp. MPGCDC proceeds
recursively until it arrives at univariate polynomials whereupon MUPGCD is called. The GCD
computed is monic.

To obtain the GCD of two r-variate integral polynomials A and B one would use the
algorithm IPGCDC which also computes the cofactors of A and B. In this algorithm mod-
ular homomorphisms and Chinese remaindering are used to reduce the problem to GCD
computations of r-variate polynomials over R = Zp, which is solved by MPGCDC.

6.4.2 Resultants

Using the algorithm suggested by the definition of the resultant, namely to construct the
Sylvester matrix and compute its determinant, is not the most efficient way to proceed.

33

Instead, MUPRES computes the resultant of two univariate polynomials A and B over
R = Zp by computing the natural PRS of A and B and by using the identity

res(A,B) = (−1)ν

[

n−1
∏

i=2

c
di−1−di+1

i

]

cdn−1

n

where ci = ldcf(Ai), di = deg(Ai), ν =
∑k−2

i=1 didi+1 and A1, . . . , An is the natural PRS.
For calculating the resultant of r-variate polynomials over R = Zp, MPRES makes use

of evaluation homomorphisms and interpolation to recursively reduce the problem to the
calculation of resultants of univariate polynomials over R = Zp which can be done by
MUPRES.

IPRES computes the resultant of r-variate polynomials over R = Z by applying modular
homomorphisms and Chinese remaindering to simplify the problem to resultant computa-
tions over R = Zp, computations which are performed by MPRES.

6.5 Functions

Integral polynomial GCDs:

C <- IPC(r,A) Integral polynomial content. Given an r-variate polynomial A over
R = Z, computes the (r − 1)-variate polynomial equal to the content of A.

IPCPP(r,A; C,Ab) Integral polynomial content and primitive part. Computes the
content and the primitive part of a given polynomial over R = Z.

IPGCDC(r,A,B; C,Ab,Bb) Integral polynomial greatest common divisor and cofac-
tors. Given two r-variate polynomials A and B over R = Z, computes the GCD
and the cofactors of A and B.

IPLCPP(r,A; C,P) Integral polynomial list of contents and primitive parts. Given
a list (A1, . . . , An) of r-variate polynomials over R = Z, computes two lists,
one consisting of the contents of the Ai that have positive degree in at least one
variable and another consisting of the primitive parts of the Ai that that have
positive degree in the main variable.

Ab <- IPPP(r,A) Integral polynomial primitive part. Given a polynomial A over
R = Z, computes the primitive part of A.

IPSCPP(r,A; s,C,Ab) Integral polynomial sign, content, and primitive part. Com-
putes the sign, the content and the primitive part of a given polynomial over
R = Z.

Modular Polynomial GCDs:

MPGCDC(r,p,A,B; C,Ab,Bb) Modular polynomial greatest common divisor and co-
factors. Computes the GCD and cofactors of two given polynomials over R = Zp.

c <- MPUC(r,p,A) Modular polynomial univariate content. Computes the univari-
ate content of an r-variate polynomial, r ≥ 2, over R = Zp.

MPUCPP(r,p,A; a,Ab) Modular polynomial univariate content and primitive part.
Giver an r-variate polynomial A, r ≥ 2, computes the univariate content a of A
and the univariate primitive part A/a.

d <- MPUCS(r,p,A,c) Modular polynomial univariate content subroutine.

Ab <- MPUPP(r,p,A) Modular polynomial univariate primitive part. Given A, an
r-variate polynomial over R = Zp, r ≥ 2, computes the univariate primitive part
of A.

34

C <- MUPGCD(p,A,B) Modular univariate polynomial greatest common divisor. Com-
putes the GCD of two given univariate polynomials over R = Zp.

L <- MUPSFF(p,A) Modular univariate polynomial squarefree factorization. Com-
putes the squarefree factorization of a given univariate polynomial over R = Zp.

Squarefree basis:

B <- IPCSFB(r,A) Integral polynomial coarsest squarefree basis. Given a list A of
positive and primitive r-variate polynomials over R = Z, each of which is of
positive degree in the main variable, computes a coarsest squarefree basis for A.

B <- IPFSFB(r,A) Integral polynomial finest squarefree basis. Given a list A of
positive and primitive r-variate polynomials over R = Z, each of which is of
positive degree in the main variable, computes a finest squarefree basis for A.

B <- IPPGSD(r,A) Integral polynomial primitive greatest squarefree divisor. Given
a polynomial A over R = Z, computes the positive and primitive greatest square-
free divisor of the primitive part of A.

L <- IPSF(r,A) Integral polynomial squarefree factorization. Given a primitive
polynomial A, of positive degree in the main variable, computes the squarefree
factorization of A.

Bs <- IPSFBA(r,A,B) Integral polynomial squarefree basis augmentation.

B <- ISPSFB(r,A) Integral squarefree polynomial squarefree basis.

Resultants:

B <- IPDSCR(r,A) Integral polynomial discriminant. Computes the discriminant of
an r-variate polynomial over R = Z, the degree of which is greater than or equal
to 2 in its main variable.

P <- IPPSC(r,A,B) Integral polynomial principal subresultant coefficients. Com-
putes a list of the non-zero principal subresultant coefficients of two given r-
variate polynomials over R = Z each of which is of positive degree in the main
variable.

C <- IPRES(r,A,B) Integral polynomial resultant. Given two r-variate polynomials
over R = Z, each of which is of positive degree in the main variable, computes
the (r − 1)-variate polynomial over R = Z equal to their resultant.

IUPRC(A,B; C,R) Integral univariate polynomial resultant and cofactor. Given two
univariate polynomials A and B over R = Z, where both A and B are of positive
degree, computes res(A,B) and the univariate polynomial C over R = Z such
that for some D, AD +BC = res(A,B) and deg(C) < deg(A).

C <- MPRES(r,p,A,B) Modular polynomial resultant. Given two r-variate polyno-
mials over R = Zp, each of which is of positive degree in the main variable,
computes the (r − 1)-variate polynomial over R = Zp equal to their resultant.

MUPRC(p,A,B; C,r) Modular univariate polynomial resultant and cofactor. Given
two univariate polynomials A and B over R = Zp, where both A and B are of
positive degree, computes res(A,B) and the univariate polynomial C over R = Zp

such that for some D, AD +BC = res(A,B) and deg(C) < deg(A).

c <- MUPRES(p,A,B) Modular univariate polynomial resultant. Computes the re-
sultant of two given univariate polynomials over R = Zp, each of which is of
positive degree in the main variable.

Polynomial Remainder Sequences:

35

S <- IPRPRS(r,A,B) Integral polynomial reduced polynomial remainder sequence.
Computes a list representing the reduced polynomial remainder sequence of two
given nonzero r-variate polynomials over R = Z.

S <- IPSPRS(r,A,B) Integral polynomial subresultant polynomial remainder se-
quence. Computes a list representing the subresultant polynomial remainder se-
quence of the first kind of two given nonzero r-variate polynomials over R = Z.

S <- MPSPRS(r,p,A,B) Modular polynomial subresultant polynomial remainder se-
quence.Computes a list representing the subresultant polynomial remainder se-
quence of the first kind of two given nonzero r-variate polynomials over R = Zp.

Extended GCDs:

MUPEGC(p,A,B; C,U,V) Modular univariate polynomial extended greatest common
divisor. Computes the GCD C of two univariate polynomials A and B over
R = Zp as well the univariate polynomials U and V such that AU +BV = C.

MUPHEG(p,A,B; C,V) Modular univariate polynomial half-extended greatest com-
mon divisor.Computes the GCD C of two univariate polynomials A and B over
R = Zp as well the univariate polynomial V such that AU + BV = C for some
U .

36

Chapter 7

Polynomial Factorization

7.1 Mathematical Preliminaries

A non-constant polynomial A(x1, . . . , xr) in R[x1, . . . , xr], where R is a unique factorization
domain, is said to be irreducible if A cannot be expressed as the product of two non-constant
polynomials in R[x1, . . . , xr]. The problem of factoring a polynomial A(x1, . . . , xr) is that of
finding distinct irreducible polynomials Ai(x1, . . . , xr) and integers ei, i = 1, . . . , k, such that
A = Ae1

1 · · ·Aek
k . Such an expression is called a complete factorization of A. The polynomials

Ai are called the irreducible factors of A and the integer ei is called the multiplicity of Ai.

7.2 Purpose

The SACLIB polynomial factorization package provides factorization algorithms for R = Zp,
p a single-precision prime and r = 1, and for R = Z for r ≥ 1. For R = Z one obtains
the sign, integer content and positive primitive irreducible factors of A, as well as the
multiplicity of each irreducible factor. The integer content is not factored. For R = Zp the
irreducible factors obtained are monic.

7.3 Methods and Algorithms

To factor an arbitrary univariate polynomial modulo a prime, one should first obtain a
similar monic polynomial by using the algorithm MPMON. Having done this, one then com-
putes the squarefree factors of the monic polynomial by using the algorithm MUPSFF. In
order to factor each squarefree factor one would use MUPFBL, which implements Berlekamp’s
algorithm. The irreducible factors returned by MUPFBL are monic.

For factoring a univariate integral polynomial, IUPFAC first computes the squarefree
factorization using the algorithm IPSF. The squarefree factors are in turn factored using
IUSFPF which first computes a factorization modulo a prime and the modular factors thus
obtained are then lifted by the quadratic version of the Hensel construction. IUPFAC returns
the sign, the integer content and a list of irreducible factors, with multiplicities, of the input
polynomial. The irreducible factors returned by IUPFAC are positive and primitive.

Multivariate integral polynomials are factored by using IPFAC. This algorithm first com-
putes the content as well as the squarefree factors of the primitive part of the input poly-
nomial and subsequently factors each of these separately. The factorization of a squarefree
primitive polynomial is performed by the algorithm ISFPF which implements a multivariate
lifting technique based on the Hensel lemma. The lifting is done one variable at a time as
opposed to lifting several variables simultaneously.

37

If the polynomial A to be factored has rational base coefficients then it must first be
converted to an integral polynomial by multiplying A by the least common multiple of the
denominators of the base coefficients and then converting the polynomial thus obtained to
integral representation. This can be achieved by using IPSRP which computes the primitive
and positive integral polynomial A′ as well as the rational number a such that A = aA′.

7.4 Functions

Factorization:

IPFAC(r,A; s,c,L) Integral polynomial factorization. Factors r-variate polynomi-
als over Z.

IUPFAC(A; s,c,L) Integral univariate polynomial factorization. Factors univariate
polynomials over Z.

L <- MUPFBL(p,A) Modular univariate polynomial factorization-Berlekamp algorithm.
Factors monic squarefree univariate polynomials over Zp.

Auxiliary Functions for Factorization:

IPCEVP(r,A; B,L) Integral polynomial, choice of evaluation points. Given an inte-
gral polynomial A that is squarefree in its main variable, computes integers that,
when substituted for the minor variables, maintain the degree of A in the main
variable and its squarefreeness.

b <- IPFCB(V) Integral polynomial factor coefficient bound. Given the degree vec-
tor of an integral polynomial A, computes an integer b such the product of the
infinity norms of any divisors of A is less than or equal to 2b times the infinity
norm of A.

Lp <- IPFLC(r,M,I,A,L,D) Integral polynomial factor list combine.

B <- IPFSFB(r,A) Integral polynomial finest squarefree basis.

a <- IPGFCB(r,A) Integral polynomial Gelfond factor coefficient bound.

IPIQH(r,p,D,Ab,Bb,Sb,Tb,M,C; A,B) Integral polynomial mod ideal quadratic Hensel
lemma.

L <- ISFPF(r,A) Integral squarefree polynomial factorization. Given a positive,
primitive integral polynomial A that is squarefree with respect to the main vari-
able, computes a list of the distinct positive irreducible factors of A.

IUPFDS(A; p,F,C) Integral univariate polynomial factor degree set.

IUPQH(p,Ab,Bb,Sb,Tb,M,C; A,B) Integral univariate polynomial quadratic Hensel
lemma.

Fp <- IUPQHL(p,F,M,C) Integral univariate polynomial quadratic Hensel lemma,
list.

L <- IUSFPF(A) Integral univariate squarefree polynomial factorization. Given a
univariate, positive, primitive, squarefree integral polynomial A, computes a list
of the positive irreducible factors of A.

M <- MCPMV(n,L) Matrix of coefficients of polynomials, with respect to main vari-
able.

MIPISE(r,M,D,A,B,S,T,C; U,V) Modular integral polynomial mod ideal, solution
of equation.

MIUPSE(M,A,B,S,T,C; U,V) Modular integral univariate polynomial, solution of
equation.

38

MPIQH(r,p,D,Ab,Bb,Sb,Tb,M,Dp,C; A,B) Modular polynomial mod ideal, quadratic
Hensel lemma.

Fp <- MPIQHL(r,p,F,M,D,C) Modular polynomial mod ideal, quadratic Hensel lemma,
list.

MPIQHS(r,M,D,Ab,Bb,Sb,Tb,s,n,C; A,B,S,T,Dp) Modular polynomial mod ideal,
quadratic Hensel lemma on a single variable.

Q <- MUPBQP(p,A) Modular univariate polynomial Berlekamp Q-polynomials con-
struction.

L <- MUPDDF(p,A) Modular polynomial distinct degree factorization. Given a monic,
squarefree polynomial A over R = Zp, computes a list ((n1, A1), . . ., (nk, Ak)),
where the ni are positive integers with n1 < · · · < nk and each Ai is the product
of all monic irreducible factors of A of degree ni.

L <- MUPFS(p,A,B,d) Modular univariate polynomial factorization, special.

39

Chapter 8

Real Root Calculation

8.1 Mathematical Preliminaries

Let A(x) be a univariate polynomial with integer coefficients. A real number x0 with
A(x0) = 0 is called a real root of A(x). A real number x0 is a root of A(x) if and only if
A(x) is divisible by (x − x0), i.e. if there is a polynomial B(x) with real coefficients such
that A(x) = (x − x0)B(x). For any real root x0 of A(x) there is a natural number k such
that A(x) is divisible by (x − x0)

k but not by (x − x0)
k+1. This number k is called the

multiplicity of the root x0 of A(x). Roots of multiplicity 1 are called simple roots. An
interval I containing x0 but no other real root of A(x), is called an isolating interval for x0.
For example, if A(x) = x2− 2, the interval (−2, 2) is not an isolating interval for a real root
of A(x), but (0, 1000) is.

8.2 Purpose

The SACLIB real root calculation package solves non-linear equations in one variable: It
computes isolating intervals for the real roots of univariate integral polynomials along with
the multiplicity of each root, and it refines the isolating intervals to any specified size.

8.3 Methods and Algorithms

For root isolation three methods are available. The coefficient sign variation method (or:
modified Uspensky method), is based on Descartes’ rule of signs. The Collins-Loos method
is based on Rolle’s theorem. Sturm’s method is based on Sturm sequences.

Generally, the coefficient sign variation method is many times faster than the other two
methods. For the coefficient sign variation method various main programs are provided to
accommodate details of input and output specifications.

For the refinement of isolating intervals to any specified precision a symbolic version of
Newton’s method is used.

Given an arbitrary integral polynomial IPRCH will calculate all its real roots to specified
accuracy. The multiplicity of each root is also computed. The algorithm uses the coefficient
sign variation method to isolate the roots from each other and then applies Newton’s method
to refine the isolating intervals to the desired width.

Given a squarefree integral polynomial IPRIM isolates all the real roots from each other.
The roots inside a specified open interval are isolated by IPRIMO. Both IPRIM and IPRIMO

use the coefficient sign variation method. Other main algorithms which use this method
are IPRIMS and IPRIMW.

40

The Collins-Loos method is implemented in IPRICL: Given an arbitrary univariate in-
tegral polynomial IPRICL produces a list of isolating intervals for its real roots. These
intervals have the additional property that the first derivative of A is monotone on each of
them.

An implementation of Sturm’s method is provided by IPRIST: Given a squarefree uni-
variate integral polynomial IPRIST produces a list of isolating intervals for its real roots.

Roots of different polynomials can be isolated from each other using the program IPLRRI.
Reference: Jeremy R. Johnson: Algorithms for polynomial real root isolation. Technical

Research Report OSU-CISRC-8/91-TR21, 1991. The Ohio State University, 2036 Neil
Avenue Mall, Columbus, Ohio 43210, Phone: 614-292-5813.

8.4 Definitions of Terms

binary rational number A rational number whose denominator is a power of 2.

interval A list I = (a, b) of rational numbers a ≤ b. If a = b the interval is called a
one-point interval and it designates the set consisting of the number a. If a < b it
is not evident from the representation whether the endpoints are thought to be part
of I or not. Therefore the specifications of the algorithms have to state whether a
particular interval is meant to be an open interval, a left-open and right closed interval,
a left-closed and right open interval or a closed interval.

standard interval An interval whose endpoints are binary rational numbers a, b such that
a = m/2k, b = (m+ 1)/2k, k and m being positive or negative integers, or zero.

(weakly) isolating interval An interval I is called a (weakly) isolating interval for a
simple real root α of the polynomial A if I contains α but no other root of A.

strongly isolating interval An isolating interval for a root α of a polynomial A is said
to be strongly isolating, if the closure of I is also an isolating interval for α.

disjoint intervals Intervals are called disjoint if the sets they designate are disjoint.

strongly disjoint intervals Disjoint intervals are called strongly disjoint if their closures
are disjoint.

inflectionless isolating interval An interval I with binary rational endpoints which is
an isolating interval for a real root x0 of A(x) is called inflectionless if the derivative
A′(x) is monotone in I, i.e. if A′′(x) does not have a root in I except possibly x0.

inflectionless isolation list A list of inflectionless isolating intervals.

8.5 Functions

High Precision Calculation

L <- IPRCH(A,I,k) Integral polynomial real root calculation, high precision. Input:
any polynomial. Output: all roots or all roots in an interval.

L <- IPRCHS(A,I,k) Integral polynomial real root calculation, high-precision spe-
cial. Input: polynomial which does not have common roots with its first or
second derivative. Output: all roots or all roots in an interval.

IPRCNP(A,I; sp,spp,J) Integral polynomial real root calculation, Newton method
preparation.

J <- IPRCN1(A,I,s,k) Integral polynomial real root calculation, 1 root.

41

Coefficient Sign Variation Method

L <- IPRIM(A) Integral polynomial real root isolation, modified Uspensky method.

L <- IPRIMO(A,Ap,I) Integral polynomial real root isolation, modified Uspensky
method, open interval.

L <- IPRIMS(A,Ap,I) Integral polynomial real root isolation, modified Uspensky
method, standard interval.

L <- IPRIMU(A) Integral polynomial real root isolation, modified Uspensky method,
unit interval.

L <- IPRIMW(A) Integral polynomial real root isolation, modified Uspensky method,
weakly disjoint intervals.

L <- IPSRM(A,I) Integral polynomial strong real root isolation, modified Uspensky
method. Input: an integral polynomial without multiple roots and no roots in
common with its second derivative. Output: an inflectionless isolation list for all
roots or all roots in an interval.

L <- IPSRMS(A,I) Integral polynomial strong real root isolation, modified Uspen-
sky method, standard interval.

Rolle’s Theorem

L <- IPRICL(A) Integral polynomial real root isolation, Collins-Loos algorithm.

Sturm’s method

IPRIST Integral polynomial real root isolation using a Sturm sequence.

Special

r <- IUPRLP(A) Integral univariate polynomial, root of a linear polynomial.

b <- IUPRB(A) Integral univariate polynomial root bound. Input: a univariate in-
tegral polynomial A. Output: a binary rational number, power of 2, which is
greater than the absolute value of any root of A.

M <- IPLRRI(L) Integral polynomial list real root isolation. Input: a list of integral
polynomials without multiple roots and without common roots. Output: a list
of strongly disjoint isolating intervals in ascending order for all the roots of all
the input polynomials – each interval is listed with the polynomial of which it
isolates a root.

Is <- IUPIIR(A,I) Integral univariate polynomial isolating interval refinement.

Low-Level Functions

IPRRS(A1,A2,I1,I2; Is1,Is2,s) Integral polynomial real root separation.

IPRRLS(A1,A2,L1,L2; Ls1,Ls2) Integral polynomial real root list separation.

L <- IPRRII(A,Ap,d,Lp) Integral polynomial real root isolation induction.

Is <- IPRRRI(A,B,I,s1,t1) Integral polynomial relative real root isolation.

J <- IPSIFI(A,I) Integral polynomial standard isolating interval from isolating
interval.

IPIIWS(A,L) Integral polynomial isolating intervals weakly disjoint to strongly dis-
joint.

IPPNPRS Integral polynomial primitive negative polynomial remainder sequence.

k <- IPVCHT(A) Integral polynomial variations after circle to half-plane transfor-
mation.

42

B <- IUPCHT(A) Integral univariate polynomial circle to half-plane transformation.

n <- IUPVAR(A) Integral univariate polynomial variations.

v <- IUPVOI(A,I) Integral univariate polynomial, variations for open interval.

v <- IUPVSI(A,I) Integral univariate polynomial, variations for standard interval.

43

Chapter 9

Algebraic Number Arithmetic

9.1 Mathematical Preliminaries

An algebraic number is a number that satisfies a rational polynomial equation. An algebraic
number α is represented by an irreducible polynomial, A(x), such that A(α) = 0. A real
algebraic number, is a real number that is also an algebraic number, and it is represented by
an irreducible polynomial and an isolating interval to distinguish it from its real conjugates.
The collection of algebraic numbers forms a field containing the real algebraic numbers as a
subfield. Since A(x) is irreducible, the extension field Q(α) obtained by adjoining α to the
rational number field is isomorphic to Q[x]/(A(x)) and elements of Q(α) are represented
by polynomials whose degrees are less than the degree of A(x). If α is real then Q(α) is an
ordered field and sign computations can be performed using the isolating interval for α.

9.2 Purpose

The SACLIB algebraic number arithmetic package provides algorithms for performing arith-
metic with algebraic numbers, with elements of an algebraic number field, and with poly-
nomials whose coefficients belong to an algebraic number field. There are algorithms for
computing the gcd of two polynomials with algebraic number coefficients and for factoring
a polynomial with algebraic number coefficients. Algorithms are also provided for perform-
ing sign computations in a real algebraic number field and for isolating the real roots of a
polynomial with real algebraic number coefficients.

9.3 Methods and Algorithms

Algorithms for performing algebraic number arithmetic use resultant computations. Let
A(x) =

∑m
i=0 aix

i = am
∏m

i=1(x − αi) be the integral minimal polynomial for α = α1 and
let B(y) =

∑n
j=0 bjy

j = bn
∏n

j=1(y−βj) be the integral minimal polynomial for β = β1. The
minimal polynomial for α+β is a factor of resx(A(x), B(y−x)) and the minimal polynomial
for α · β is a factor of resx(A(x), x

nB(y/x)). If α and β are real algebraic numbers, the
particular factor can be found by using the isolating intervals for α and β. The algorithms
ANSUM and ANPROD use these ideas to perform addition and multiplication in the field of real
algebraic numbers. Subtraction and division can be performed by negating and adding and
inverting and multiplying respectively. The minimal polynomial of −α is A(−x) and the
minimal polynomial of 1/α is xmA(1/x). These operations are provided by the algorithms
IUPNT and PRT in the polynomial arithmetic system.

Let Q(α) be the extension field of the rationals obtained by adjoining the algebraic
number α. Arithmetic in Q(α) is performed using the isomorphism Q(α) ∼= Q[x]/(A(x)).

44

Elements of Q(α) are represented by polynomials whose degrees are less than the degree
of the minimal polynomial of α and addition and multiplication are performed using poly-
nomial multiplication and addition modulo the minimal polynomial. Inverses of elements
of Q(α) are calculated by using a resultant computation. If B(x) is the polynomial repre-
senting β = B(α) and R = res(A(x), B(x)), then there exist polynomials S(x) and T (x)
such that A(x)S(x) + B(x)T (x) = R. Since the minimal polynomial A(x) is irreducible,
the resultant does not equal zero and B(α)−1 = T (α)/R. The algorithm AFINV uses this
approach to compute inverses of elements of Q(α).

If α ∈ I is a real algebraic number, then the field Q(α) can be ordered. The algorithm
AFSIGN computes the sign of an element of Q(α). The sign of β = B(α) is determined by
refining the isolating interval, I, for α until it can be shown that B(y) does not contain any
roots in I. If there are no roots of B(y) in the isolating interval I, then the sign of B(α)
is equal to the sign of B(y) for any y ∈ I. The algorithm AFSIGN uses this approach and
Descartes’ rule of signs to determine how much to refine I.

SACLIB provides algorithms for computing with polynomials whose coefficients belong
to an algebraic field Q(α). Besides basic arithmetic, there are algorithms for polynomial
gcd computation, factorization, and real root isolation. The algorithm AFUPGC uses the
monic PRS to compute the gcd of two univariate polynomials. The algorithms AFUPGS,
AFUPSF, and AFUPSB use this algorithm to compute greatest squarefree divisors, squarefree
factorization, and a squarefree basis respectively. Algorithms are also provided to isolate the
real roots of a polynomial whose coefficients belong to a real algebraic number field. Both
the Collins-Loos algorithm (AFUPRICL) and the coefficient sign variation method (AFUPRICS)
are provided.

An algebraic number may arise as a solution of a polynomial with algebraic number
coefficients. The norm can be used to find a defining polynomial with integral coefficients.
Let B(α, y) be a polynomial with coefficients in Q(α). The norm of B(α, y) is the rational
polynomial Norm(Bα, y)) =

∏m
i=1 B(αi, y). The norm can be computed with the resultant

computation resx(A(x), B(x, y)) which produces a polynomial similar to the norm. The
algorithm AFPNORM uses this approach to compute the norm. The algorithm AFPNIP returns
the list of irreducible factors of the norm. If α is a real algebraic number, the isolating
interval for α can be used to select the appropriate irreducible factor of the norm. This is
done by the algorithm AFUPMPR.

As a special case, the minimal polynomial of β = B(α) can be computed by calculating
the norm of the linear polynomial y − B(α). Since y − B(α) is irreducible the norm is a
power of an irreducible polynomial, and the minimal polynomial can be obtained with a
greatest squarefree divisor computation. The algorithm ANFAF uses this approach to convert
the representation of an element of an algebraic number field to its representation as an
algebraic number.

The algorithm AFUPFAC uses the norm to factor a squarefree polynomial whose coeffi-
cients belong to an algebraic number field. Let B∗(y) = Norm(B(α, y)), and let

∏t
i=1 B

∗
i (y)

be the irreducible factorization of B∗(y). Provided the norm is squarefree the irreducible
factorization of B(α, y) =

∏t
i=1 gcd(B(α, y), B∗

i (y)). If B∗(y) is not squarefree, a transla-
tion, B(α, y− sα), is computed whose norm is squarefree. The factorization of B(α, y) can
be recovered from the factorization of the translated polynomial.

SACLIB also provides an algorithm for computing a primitive element of a multiple
extension field. Let α and β be algebraic numbers and consider the multiple extension field
Q(α, β). The primitive element theorem states that there exists a primitive element γ such
that Q(α, β) = Q(γ). The algorithms ANPEDE and ANREPE provide a constructive version of
this theorem.

References: R. G. K. Loos: Computing in Algebraic Extensions, In “Computer Algebra,
Symbolic and Algebraic Computation”, pages 173–187.

Jeremy R. Johnson: Algorithms for polynomial real root isolation. Technical Research
Report OSU-CISRC-8/91-TR21, 1991. The Ohio State University, 2036 Neil Avenue Mall,
Columbus, Ohio 43210, Phone: 614-292-5813.

45

Barry Trager: Algebraic Factoring and Rational Function Integration, In “SYMSAC ’76:
Proceedings of the 1976 ACM Symposium on Symbolic and Algebraic Computation”, pages
219–226.

9.4 Definitions of Terms

algebraic number A solution of a rational polynomial equation. An algebraic number α
is represented either by a rational minimal polynomial or an integral minimal poly-
nomial.

algebraic integer A solution of a monic integral polynomial equation.

real algebraic number A real number that is also an algebraic number. A real algebraic
number is represented by an integral minimal polynomial and an acceptable isolating
interval.

rational minimal polynomial The rational minimal polynomial for an algebraic number
α is the unique monic, irreducible rational polynomial A(x) such that A(α) = 0.

integral minimal polynomial The integral minimal polynomial for an algebraic number
α is the unique, positive, primitive, integral polynomial A(x) such that A(α) = 0.

acceptable isolating interval an isolating interval, I, for a real algebraic number α,
where I is either a left-open and right-closed standard interval or a one-point interval.

algebraic field element an element of the extension field Q(α). β ∈ Q(α) is represented
by a list (r,B(y)), where β = rB(α) and r is a rational number and B(y) is a primitive
integral polynomial whose degree is less than the degree of the minimal polynomial
of α.

9.5 Representation

There are several different representations for elements of Q(α). Let A(x) be the integral
minimal polynomial for an algebraic number α with deg(A(x)) = m. An element β of Q(α)
can be uniquely represented by:

1. A rational polynomial, B(x), whose degree is less than m and such that B(α) = β.

2. A pair (r,B(x)), where r is a rational number, B(x) is a positive primitive integral
polynomial, and β = B(α) = rB(α).

The default representation is (2). The algorithm AFCR converts representation (1) to (2),
and the algorithm AFICR converts representation (2) to (1).

Let Z[α] denote the Z-module with basis 1, α, α2, . . . , αm−1. Elements of Z[α] are
represented by integral polynomials whose degree is less than m. If α is an algebraic
integer, then Z[α] is a ring. If an algorithm does not require division or reduction by the
minimal polynomial, operations in Q(α) can be replaced with operations in Z[α]. When
this is possible, efficiency is gained by using the integral representation Z[α]. An important
example is polynomial real root isolation. Let P (α, y) be a polynomial in Q(α)[y] and let
d be the greatest common divisor of the denominators of the coefficients of P (α, y). Then
dP (α, y) is in Z[α, y] and has the same roots as P (α, y). Moreover, the coefficient sign
variation method for real root isolation only uses operations which can be performed in
Z[α].

The name of algorithms which operate in Z[α] begin with the letters AM. The algorithm
AMPSAFP(r, P) computes a polynomial P ∈ Z[α,X1, . . . , Xr] which is similar to the poly-
nomial P ∈ Q(α)[X1, . . . , Xr]. The algorithm AIFAN computes an algebraic integer α such
that Q(α) = Q(α).

46

9.6 Functions

Algebraic Number Arithmetic

ANIIPE(M,I,N,J,t,L; S,k,K) Algebraic number isolating interval for a primitive
element

ANPROD(A,I,B,J; C,K) Algebraic number product

ANSUM(A,I,B,J;C,K) Algebraic number sum

ANPEDE(A,B;C,t) Algebraic number primitive element for a double extension

b <- ANREPE(M,A,B,t) Algebraic number represent element of a primitive exten-
sion

Algebraic Field Arithmetic

c <- AFDIF(a,b) Algebraic number field element difference

b <- AFINV(M,a) Algebraic number field element inverse

b <- AFNEG(a) Algebraic number field negative

c <- AFPROD(P,a,b) Algebraic number field element product

c <- AFQ(M,a,b) Algebraic number field quotient

c <- AFSUM(a,b) Algebraic number field element sum

Real Algebraic Number Sign and Order Computation

t <- AFCOMP(M,I,a,b) Algebraic number field comparison

s <- AFSIGN(M,I,a) Algebraic number field sign

s <- AMSIGN(M,I,a) Algebraic module sign

AMSIGNIR(M,I,a;s,Is) Algebraic module sign, interval refinement

Algebraic Polynomial Arithmetic

C <- AFPAFP(r,M,a,B) Algebraic number field polynomial algebraic number field
element product

C <- AFPAFQ(r,M,A,b) Algebraic number field polynomial algebraic number field
element quotient

C <- AFPDIF(r,A,B) Algebraic number field polynomial difference

Ap <- AFPMON(r,M,A) Algebraic number field polynomial monic

B <- AFPNEG(r,A) Algebraic number field polynomial negative

C <- AFPPR(r,M,A,B) Algebraic number field polynomial product

AFPQR(r,M,A,B; Q,R) Algebraic number field polynomial quotient and remainder

C <- AFPSUM(r,A,B) Algebraic number field polynomial sum

Algebraic Polynomial Differentiation and Integration

B <- AFPDMV(r,M,A) Algebraic number field polynomial derivative, main variable

B <- AFPINT(r,M,A,b) Algebraic number field polynomial integration

B <- AMPDMV(r,M,A) Algebraic module polynomial derivative, main variable

Algebraic Polynomial Factorization

F <- AFUPFAC(M,B) Algebraic number field univariate polynomial factorization

47

L <- AFUPSF(M,A) Algebraic number field univariate polynomial squarefree factor-
ization

Algebraic Polynomial Greatest Common Divisors

AFUPGC(M,A,B; C,Ab,Bb) Algebraic number field univariate polynomial greatest
common divisor and cofactors

B <- AFUPGS(M,A) Algebraic number field polynomial greatest squarefree divisor

Algebraic Polynomial Norm Computation

L <- AFPNIP(M,A) Algebraic number field polynomial normalize to integral poly-
nomial

Bs <- AFPNORM(r,M,B) Algebraic number field polynomial norm.

Algebraic Polynomial Substitution and Evaluation

C <- AFPCMV(r,M,A,B) Algebraic number field polynomial composition in main
variable

B <- AFPEMV(r,M,A,a) Algebraic number field polynomial evaluation of main vari-
able

B <- AFPEV(r,M,A,i,a) Algebraic number field polynomial evaluation

B <- AFPME(r,M,A,b) Algebraic number field polynomial multiple evaluation

s <- AFUPSR(M,I,A,c) Algebraic number field univariate polynomial, sign at a ra-
tional point

s <- AMUPBES(M,I,A,c) Algebraic module univariate polynomial, binary rational
evaluation of sign.

s <- AMUPSR(M,I,A,c) Algebraic module univariate polynomial, sign at a rational
point

B <- IPAFME(r,M,A,b) Integral polynomial, algebraic number field multiple evalu-
ation

B <- RPAFME(r,M,A,b) Rational polynomial, algebraic number field multiple eval-
uation

Algebraic Polynomial Transformations

B <- AMUPBHT(A,k) Algebraic module univariate polynomial binary homothetic trans-
formation

B <- AMUPNT(A) Algebraic module univariate polynomial negative transformation

B <- AMUPTR(A,h) Algebraic module univariate polynomial translation

B <- AMUPTR1(A) Algebraic module univariate polynomial translation by 1

Real Algebraic Polynomial Real Root Isolation

N <- AFUPBRI(M,I,L) Algebraic number field univariate polynomial basis real root
isolation

AFUPMPR(M,I,B,J,L; Js,j) Algebraic number field polynomial minimal polyno-
mial of a real root

b <- AFUPRB(M,I,A) Algebraic number field univariate polynomial root bound

L <- AFUPRICL(M,I,A) Algebraic number field univariate polynomial real root iso-
lation, Collins-Loos algorithm

48

L <- AFUPRICS(M,I,A) Algebraic number field univariate polynomial real root iso-
lation, coefficient sign variation method

a <- AFUPRL(M,A) Algebraic number field univariate polynomial, root of a linear
polynomial

n <- AFUPVAR(M,I,A) Algebraic number field univariate polynomial variations

AMUPMPR(M,I,B,J,L; Js,j) Algebraic module univariate polynomial minimal poly-
nomial of a real root

L <- AMUPRICS(M,I,A) Algebraic module univariate polynomial real root isolation,
coefficient sign variation method

AMUPRICSW(M,I,A;L,Is) Algebraic module univariate polynomial real root isola-
tion, coefficient sign variation method, weakly disjoint intervals

AMUPRINCS(M,I,A,a,b;L,Is) Algebraic module univariate polynomial root isola-
tion, normalized coefficient sign variation method

AMUPVARIR(M,I,A; n,J) Algebraic module univariate polynomial variations, inter-
val refinement

Algebraic Polynomial Real Root Refinement

Js <- AFUPIIR(M,I,B,J) Algebraic number field polynomial isolating interval re-
finement

AFUPIIWS(M,I,A,L) Algebraic number field univariate polynomial isolating inter-
vals weakly disjoint to strongly disjoint

AFUPRLS(M,I,A1,A2,L1,L2; Ls1,Ls2) Algebraic number field univariate polyno-
mial real root list separation

Js <- AFUPRRI(M,I,A,B,J,s1,t1) Algebraic number field univariate polynomial
relative real root isolation

AFUPRRS(M,I,A1,A2,I1,I2; Is1,Is2,s) Algebraic number field univariate poly-
nomial real root separation

Js <- AMUPIIR(M,I,B,J) Algebraic module polynomial isolating interval refine-
ment

AMUPIIWS(M,I,A,L) Algebraic module univariate polynomial isolating intervals weakly
disjoint to strongly disjoint

AMUPRLS(M,I,A1,A2,L1,L2; Ls1,Ls2) Algebraic module univariate polynomial real
root list separation

AMUPRRS(M,I,A1,A2,I1,I2; Is1,Is2,s) Algebraic module univariate polynomial
real root separation

Conversion

Ap <- AFCR(A) Algebraic number field element convert representation

a <- AFFINT(M) Algebraic number field element from integer

a <- AFFRN(R) Algebraic number field element from rational number

Ap <- AFICR(A) Algebraic number field element inverse convert representation

B <- AFPCR(r,A) Algebraic number field polynomial convert representation

B <- AFPFIP(r,A) Algebraic number field polynomial from integral polynomial

B <- AFPFRP(r,A) Algebraic number field polynomial from rational polynomial

B <- AFPICR(r,A) Algebraic number field polynomial inverse convert representa-
tion

49

AIFAN(M; mh,Mh) Algebraic integer from algebraic number

B <- AMPSAFP(r,A) Algebraic module polynomial similar to algebraic field polyno-
mial

ANFAF(M,I,a; N,J) Algebraic number from algebraic number field element

Input/Output

AFDWRITE(M,I,b,n) Algebraic number field, decimal write

AFPWRITE(r,A,V,v) Algebraic number field polynomial write

AFUPWRITE(A,vA,vc) Algebraic number field univariate polynomial write

AFWRITE(A,v) Algebraic field element write

ANDWRITE(M,I,n) Algebraic number decimal write

50

Appendix A

Calling SACLIB Functions from

C

This chapter describes how the SACLIB environment has to be set up for SACLIB functions
to work correctly. We will start with a quick introduction to the basics using a sample
program in Section A.1. In Section A.2 we describe the steps necessary for combining
dynamic allocation with SACLIB list processing. Special care has to be taken with SACLIB
data structures addressed by global variables. This is explained in Section A.3. Finally,
Section A.4 describes how SACLIB can be initialized without using sacMain(), and Section
A.5 gives some information on error handling in SACLIB.

A.1 A Sample Program

Figure A.1 shows the basic layout of a program using SACLIB functions.
Note that the only thing which is different from ordinary C programs are the #include

"saclib.h" statement and the fact that the main routine is called sacMain instead of main.
One important point is that the argc and argv variables passed to sacMain will not

contain all command line parameters. Parameters starting with “+” are filtered out and
used for initializing some SACLIB global variables. Information on these parameters is
written out when a program is called with the parameter “+h”.

In Section A.4 we give some more details on the initializations done before sacMain is
called.

A.2 Dynamic Memory Allocation in SACLIB

When one needs to randomly (as opposed to sequentially) access elements in a data structure,
one may prefer to use arrays instead of lists. If the size and the number of these arrays is
determined at runtime, they have to be dynamically allocated. Furthermore, one may need
to mix them with lists, in which case the garbage collector must be able to handle them.

The concept of the GCA (Garbage Collected Array) handle provides this kind of dynamic
data structure.

Nevertheless it is recommended to first check whether it might be possible to reformulate
the algorithm so that lists can be used instead of arrays. In many cases one uses arrays only
because one is more familiar with them, although lists may be better suited to the problem
at hand.

The following functions are to be used for initializing GCA handles and for accessing
the elements of the corresponding arrays:

51

#include "saclib.h"

int sacMain(argc, argv)

int argc;

char **argv;

{

Word I1,I2,I3,t;

Word i,n;

Step1: /* Input. */

SWRITE("Please enter the first integer: "); I1 = IREAD();

SWRITE("Please enter the second integer: "); I2 = IREAD();

SWRITE("How many iterations? "); n = GREAD();

Step2: /* Processing. */

t = CLOCK();

for (i=0; i<n; i++)

I3 = IPROD(I1,I2);

t = CLOCK() - t;

Step3: /* Output. */

IWRITE(I1); SWRITE(" * "); IWRITE(I2); SWRITE(" =\n"); IWRITE(I3);

SWRITE("\nRepeating the above computation "); GWRITE(n);

SWRITE(" times took\n"); GWRITE(t); SWRITE(" milliseconds.\n");

Return:

return(0);

}

Figure A.1: A sample program.

A <- GCAMALLOC(s,f) is used for memory allocation. It takes a BETA-digit giving the size
of the array in Words as input, uses malloc() to allocate the array, and returns a
GCA handle (a Word). This GCA handle is not a C pointer to the array so you
cannot address the elements of the array in C-style using this handle. Rather, it can
be used to store a reference to the array in SACLIB lists.

The second parameter to GCAMALLOC()may take one of the following two values (which
are constants defined in “saclib.h”):

• GC CHECK . . . This will cause the garbage collector to check the contents of the
array for list or GCA handles.

• GC NO CHECK . . . With this setting, the garbage collector will ignore the contents
of the array. Therefore, GC NO CHECK should only be used if it is guaranteed
that the array will never contain list or GCA handles (e.g. if it is used to store
BETA-digits).

If you are not sure which one to choose, use GC CHECK, as inappropriate use of
GC NO CHECK may cause the program to crash.

GCASET(A,i,a) sets the i-th element of the array referenced by the GCA handle A to the
value a. Here, a can be any Word.

a <- GCAGET(A,i) returns the value of the i-th element of the array referenced by the
GCA handle A.

52

Figure A.2 shows how the mechanism of GCA handles is used.

.

.

.

Word A, L, I,i;

.

.

.

Step2: /* Here we do some allocation. */

L = NIL;

do {

SWRITE("Enter an integer (0 to quit): "); I = IREAD();

A = GCAMALLOC(10,GC_CHECK);

for (i=0; i<10; i++)

GCASET(A,i,IDPR(I,i+1));

L = COMP(A,L);

}

until (ISZERO(I));

.

.

.

Figure A.2: Sample code using GCA handles.

The code inside the do/until loop reads an integer I, allocates an array A of 10 Words,
stores the value I ∗ (i+ 1) at position i in the array using GCASET(), and then appends a
new element containing the GCA handle of the array A to the beginning of the list L.

Always remember that GCA handles must be used whenever you want to store references
to SACLIB structures (i.e. lists) in dynamically allocated memory. Using the standard
UNIX function malloc() may crash your program sometime after a garbage collection or
at least cause some strange bugs.

Furthermore, GCA handles are also implemented in such a way that they can be used
as input to list processing functions in places where objects are regarded as data. E.g.
in the COMP() function, a GCA handle can be used as the first argument (the element to
be appended to the list) but not as the second argument (the list being appended to).
Nevertheless note that the functions LWRITE(), EXTENT(), and ORDER() are not defined
for lists containing GCA handles.

There are two more functions taking GCA handles as input. It is not recommended to
call these functions directly. They are listed here only for completeness.

p <- GCA2PTR(A) gives access to the array referenced by a GCA handle. It takes a GCA
handle as input and returns a C pointer to the array of Words allocated by a previous
call to GCAMALLOC(). This C pointer must not be used as input to SACLIB functions
or stored in SACLIB lists. Rather, it can be used to address the elements of the array
directly.

Note that this is not the recommended way of accessing array elements. If you over-
write the variable containing the GCA handle (e.g. an optimizing compiler might
remove it if it is not used anymore), you can still access the array using the C pointer,
but the garbage collector will free the allocated memory the next time it is invoked.

GCAFREE(A) can be used to explicitly free the memory allocated by GCAMALLOC(). It takes
a GCA handle as input which becomes invalid after the call.

53

You should consider calling GCAFREE() only in cases where you are sure you will not
need the memory referenced by a GCA handle any more and want to deallocate it
immediately instead of putting this off until the next garbage collection or until the
SACLIB cleanup.

A.3 Declaring Global Variables to SACLIB

If you are using global variables, arrays, or structures containing SACLIB list or GCA
handles other than those defined within SACLIB (in “external.c”), you have to make them
visible to the garbage collector. This is done by the function GCGLOBAL().

Figure A.3 shows how these macros are used:

#include "saclib.h"

Word GL = NIL;

Word GA = NIL;

char buffer[81];

int flag;

int sacMain(argc, argv)

int argc;

char **argv;

{

... /* Variable declarations. */

Step1: /* Declare global variables. */

GCGLOBAL(&GL);

GCGLOBAL(&GA);

Step2: /* Initialize global variables. */

GA = GCAMALLOC(10,GC_CHECK);

.

.

.

Figure A.3: Declaring global variables.

First two global variables GL and GA of type Word, a global array buffer of 81 characters,
and a global variable flag of type int are declared.

The variables GL and GA are declared to the garbage collector by calls to GCGLOBAL()

before they are initialized. Note that for the variables buffer and flag this is not neces-
sary because they will not hold SACLIB list or GCA handles at any time during program
execution.

Calling GCGLOBAL on a pointer to a global variable tells the garbage collector not to free
cells or arrays referenced by the corresponding variable. You should be careful about not
missing any global variables which ought to be declared: while declaring too much does not
really matter, declaring too little will cause weird bugs and crashes . . .

54

A.4 Initializing SACLIB by Hand

If it is desired to have complete control over command line parameters or if SACLIB is used
only as part of some bigger application, then the necessary initializations can also be done
directly without using sacMain().

There are three functions which are of interest:

ARGSACLIB(argc,argv;ac,av) does argument processing for SACLIB command line argu-
ments. These must start with a “+” and are used to set various global variables. The
argument “+h” causes a usage message to be printed (by INFOSACLIB()). Then the
program is aborted.

ARGSACLIB takes the argc and argv parameters of main() as input. It returns the
number of non-SACLIB command line arguments in ac and a pointer to an array
of non-SACLIB command line arguments in av. This means that the output of
ARGSACLIB() is similar to argc and argv with the exception that all arguments start-
ing with “+” have been removed.

BEGINSACLIB(p) initializes SACLIB by allocating memory, setting the values of various
global variables, etc. It must be passed the address of a variable located on the stack
before any variable containing SACLIB structures such as lists or GCA handles. One
variable which fulfills this requirement is argc, for example.

ENDSACLIB(f) frees the memory allocated by BEGINSACLIB(). It must be passed one of
the following values (which are constants defined in “saclib.h”):

• SAC FREEMEM . . . This will cause it to also free all remaining memory allocated
by GCAMALLOC().

• SAC KEEPMEM . . . This will cause it not to free the remaining memory allocated by
GCAMALLOC(). Nevertheless, all GCA handles become invalid after ENDSACLIB()
has been called, so the memory can only be accessed by C pointers which were
initialized by calls to GCA2PTR() before calling ENDSACLIB(). Furthermore, if
any of the arrays contains list or GCA handles, these will also become invalid, so
keeping the allocated memory only makes sense when the arrays contain BETA-
or GAMMA-digits.

Deallocation then has to be done by the standard UNIX function free(), because
GCAFREE() only works when the SACLIB environment is valid.

Figure A.4 gives an example of how the SACLIB environment can be initialized, used,
and removed inside a function.

The function symbolic computation() in this example encapsulates SACLIB as part of
some bigger application whose main routine is main() instead of sacMain(). From Step 2
on the SACLIB environment is initialized and any SACLIB function may be used. Outside
the area enclosed by BEGINSACLIB / ENDSACLIB, calls to SACLIB functions may crash the
program.

A.5 SACLIB Error Handling

SACLIB functions do not check whether the parameters passed to them are correct and
fulfill their input specifications. Calling a function with invalid inputs will most probably
cause the program to crash instead of aborting in a controlled way.

Nevertheless, there are situations where SACLIB functions may fail and exit the program
cleanly with an error message. For example, this is the case when an input functions
discovers a syntax error.

55

#include "saclib.h"

void symbolic_computation()

{

Word stack;

Step1: /* Initialise SACLIB. */

BEGINSACLIB(&stack);

Step2: /* Use SACLIB. */

.

.

.

Step3: /* Remove SACLIB. */

ENDSACLIB(SAC_FREEMEM);

}

Figure A.4: Sample code for initializing SACLIB by hand.

All error handling (i.e. writing a message and aborting the program) is done by the
function FAIL(). If some more sophisticated error processing is desired, the simplest way
is to replace it by a custom written function.

A.6 Compiling

The SACLIB header files must be visible to the compiler and the compiled SACLIB library
must be linked. How this is done is explained in the “Addendum to the SACLIB User’s
Guide”, which should be supplied by the person installing SACLIB.

A point worth mentioning is the fact that several SACLIB functions are also defined as
macros. By default, the macro versions are used, but there is a constant for switching on
the C function versions: NO SACLIB MACROS switches off all macros except for FIRST, RED,
SFIRST, SRED, ISNIL, GCASET, GCAGET. These elementary list and GCA functions are always
defined as macros.

If you want to use this constant, you must add the statement

#define NO SACLIB MACROS

before you include the file “saclib.h”.
Alternatively, you can use the “-D” option of the C compiler (see the “Addendum to

the SACLIB User’s Guide” for more information).

56

Appendix B

ISAC: An Interactive Interface

to SACLIB

B.1 What is ISAC?

ISAC is a small experimental interactive interface to SACLIB, allowing simple read--eval--write
cycles of interaction.

The system is designed and implemented in the most straightforward way, so that its
source code can be used as an example or a tutorial for those who want to quickly write
an interactive test environment for their SACLIB based functions or intend to develop
professional interfaces to SACLIB.

B.2 Supported SACLIB Algorithms

All the SACLIB library algorithms and macros are accessible. NIL and BETA are available
as constants.

B.3 Command Line Options

ISAC takes the standard SACLIB command line options for initializing various global vari-
ables. In order to find out what is available, issue the command

isac +h

B.4 Interface Functionality

An ISAC session consists of one or more statements. Every statement must end with a
semicolon ‘;’. A statement can be one of the three kinds:

• command

• call

• assignment

The commands supported in this version are:

quit; For quitting the session.

vars; For displaying the contents of the variables. Values are
displayed in internal SACLIB format.

57

help [algName]; For displaying a general help or an algorithm. For exam-
ple, in order to display the algorithm IPROD, issue the the
command: help IPROD;

view algName; For displaying an algorithm with the editor vi(1).

save fileName; For saving the current state of the session (i.e. the variable
binding) to a file.

restore fileName; For restoring the state of a session from a file.

A call statement is a call to any procedures or functions in the SACLIB library. For example,

IPFAC(r,A; s,c,F);

IPWRITE(r,IPSUM(r,A,B),V);

An assignment statement is of the form:

var := expression;

For example,

A := IPROD(a,ISUM(b,c));

a := 2 * 3 + 4;

a := 3 % 2;

B.5 Interface Grammar

Below we give a context-free grammar for a session. We have followed the following con-
ventions:

• Upper-case strings and quoted strings denote tokens,

• Lower-case strings denote non-terminals.

session

: statement

| session statement

;

statement

: command ’;’

| proc_call ’;’

| assignment ’;’

;

command

: IDENT

| IDENT CMDARGS

;

proc_call

: IDENT ’(’ proc_arg_star ’)’

;

assignment

: IDENT ’:=’ expr

58

;

proc_arg_star

: val_star

| val_star ’;’ ref_star

;

val_star

: /* empty */

| val_plus

;

val_plus

: expr

| val_plus ’,’ expr

;

ref_star

: /* empty */

| ref_plus

;

ref_plus

: ref

| ref_plus ’,’ ref

;

ref

: IDENT

expr

: expr ’+’ expr

| expr ’-’ expr

| expr ’*’ expr

| expr ’/’ expr

| expr ’%’ expr

| ’+’ expr

| ’-’ expr

| ’(’ expr ’)’

| func_call

| atom

;

func_call

: IDENT ’(’ func_arg_star ’)’

;

func_arg_star

: val_star

;

atom

: IDENT

| INTEGER

59

;

60

Appendix C

Notes on the Internal Workings

of SACLIB

C.1 Lists, GCA Handles, and Garbage Collection

C.1.1 Implementation of Lists

When SACLIB is initialised, the array SPACE containing NU+1 Words is allocated from the
heap. This array is used as the memory space for list processing. Lists are built from cells,
which are pairs of consecutive Words the first of which is at an odd position in the SPACE

array. List handles (“pointers” to lists) are defined to be BETA plus the index of the first cell
of the list in the SPACE array with the handle of the empty list being NIL (which is equal
to BETA). Figure C.1 shows the structure of the SPACE array.

SPACE✟✟✟✯

♣ ♣ ♣

Value of the
SACLIB
list handle: BETA + 0 1 3 5

✂ �✄ ✁

cell
✂ �✄ ✁

cell
✂ �✄ ✁

cell

NU-3 NU-1

✂ �✄ ✁

cell
✂ �✄ ✁

cell

Figure C.1: The SPACE array.

The first Word of each cell is used to store the handle of the next cell in the list (i.e.
the value returned by RED()), while the second Word contains the data of the list element
represented by the cell (i.e. the value returned by FIRST()). Figure C.2 gives a graphical
representation of the cell structure for a sample list. The arrows stand for list handles.

L
❄

♣ ♣ ♣ ♣ ♣ ♣♣ ♣ ♣ ♣ ♣ ♣♣ ♣ ♣ ♣ ♣ ♣♣ ♣ ♣ ♣ ♣ ♣♣ ♣ ♣ ♣ ♣ ♣q

❄
q

❄
q

❄
1 NIL 8 9 NIL 6q

✻

Figure C.2: The cell structure of the list L = (1, (9, 6), 8).

As already mentioned in Chapter 2, atoms are required to be integers a with −BETA <
a < BETA. This allows the garbage collector and other functions operating on objects
to decide whether a variable of type Word contains an atom or a list handle. Note that
values less or equal −BETA are legal only during garbage collection while values greater
than BETA+ NU are used for referencing other garbage collected structures.

The Words of a cell adressed by a list handle L are SPACE[L − BETA] and SPACE[L −
BETA + 1]. To simplify these computations, the C pointers SPACEB and SPACEB1 are set

61

to the memory addresses of SPACE[−BETA] and SPACE[−BETA + 1], respectively. This is
used by the functions FIRST(L), which returns SPACEB1[L], and RED(L), which returns
SPACEB[L].

C.1.2 Implementation of GCA Handles

When SACLIB is initialised, the array GCASPACE containing NUp + 1 structures of type
GCArray is allocated. A GCA handle is defined to be BETApplus the index of the corre-
sponding GCArray structure in the GCASPACE array, with the null handle being NIL.

The GCArray structure contains the following fields:

• next . . . a Word, used for linking empty GCArrays to the GCAAVAIL list and for marking
(see Section C.1.3).

• flag . . . a Word, set to one of GC CHECK and GC NO CHECK (see Section C.1.3).

• len . . . a Word, the length of the array in Words.

• array . . . a C pointer to an array of Words of size len.

When GCAMALLOC()(is called, it takes the first GCArray from the GCAAVAIL list and
initializes its fields.

GCA2PTR() simply returns the C pointer in the array field.
GCAFREE() deallocates the memory addressed by the array field, sets all fields to zero,

and links the GCArray to the beginning of the GCAAVAIL list.

C.1.3 The Garbage Collector

Garbage collection is invoked when COMP() or GCAMALLOC() call GC() in the case of AVAIL
or GCAAVAIL being NIL. The garbage collector consists of two parts:

• The function GC() is system dependent. It must ensure that the contents of all
processor registers are pushed onto the stack and pass alignment information and the
address of the end of the stack to GCSI().

• GCSI() is the system independent part of the garbage collector. It uses a mark-and-
sweep method for identifying unused cells:

Marking: The processor registers, the system stack, and the variables and GCA
arrays to which pointers are stored in the GCGLOBALS list are searched for non-
NIL list and GCA handles. All the cells accessible from these handles are marked
by a call to MARK().

If a list handle is found, this function traverses the cells of the list, marking them
by negating the contents of their first Word. If the second Word of a cell contains
a list or GCA handle, MARK() calls itself recursively on this handle.

In case of a GCA handle, the GCA cell adressed by the handle is marked by
negating the contents of its next field. If the cell’s flag field is not set to
GC NO CHECK, the Words in the array pointed to by the array field are searched
for list or GCA handles with MARK() calling itself recursively on valid handles.

Sweeping: In the sweep step, the AVAIL and GCAAVAIL lists are built:

Cells in SPACE whose first Word contains a positive value are linked to the AVAIL
list. If the first Word of a cell contains a negative value, it is made positive again
and the cell is not changed in any other way.

Cells in GCASPACE whose next field contains a positive value are linked to the
GCAAVAIL list and the array pointed to by the array field is deallocated. If the
next field contains a negative value, it is made positive again and the cell is not
changed in any other way.

62

If the AVAIL list contains no more than NU/RHO cells at the end of garbage collection, an
error message is written to the output stream and the program is aborted.

C.2 Constants and Global Variables

This section lists SACLIB types, constants, and global variables. All types and constants
are defined in “saclib.h”, “sactypes.h”, and “sacsys.h”. External variables are defined in
“external.c” and declared as external in “saclib.h”.

The average user of SACLIB functions should not find it neccessary to deal directly
with any of these values (except for Word, BETA, and NIL, which are also mentioned in other
sections). If you modify any of the values listed below without knowing what you are doing,
you may either crash SACLIB or cause it to produce false results, so please take care!

Notation: In the description below, pointer means a C pointer (i.e. an actual memory
address) and pointer to an array means a C pointer to the first element of an array. List
handle means a SACLIB list handle (i.e. an integer L with BETA ≤ L < BETAp which is
used as an index into the SPACEB and SPACEB1 arrays), and GCA handle means a handle
for a garbage collected array (i.e. an integer A with BETAp ≤ A < BETApp which is used as
an index into the GCASPACEBp array). Cell means a SACLIB list cell (i.e. two consecutive
Words in the SPACE array, the first one of which has an odd index) and GCA cell means a
GCArray structure in the GCASPACE array.

In SACLIB only two low-level data structures are typechecked by the C compiler1. These
two typedefs are:

• Word . . . the basic type which in most installations of SACLIB will be the same as a
C int. Word is defined in “sysdep.h”.

• GCArray . . . a struct containing information on garbage collected arrays. This is a
SACLIB internal data structure defined in “sactypes.h”.

The following constants are defined in “sacsys.h” except for NIL, which is defined in
“saclib.h”:

• BETA . . . a Word, the value used to distinguish between atoms and lists. This is also
the base for the internal representation of large integers. BETA must be a power of 2
such that 28 ≤ BETA and 3 ∗ BETA fits into a Word. In most implementations where a
Word is a standard C int with n bits, the setting is BETA = 2n−3.

• BETA1 . . . a Word, BETA1 = BETA− 1.

• NIL . . . a Word, the empty list handle2.

• NU , NUp , NPRIME , NSMPRM , NPFDS , RHO , NPTR1 . . . Words, the initial values
for the corresponding global variables.

The following flags are defined in “saclib.h”:

• GC CHECK / GC NO CHECK . . . Words, used for telling the garbage collector whether an
array allocated by GCAMALLOC() will contain list or GCA handles (and thus cannot
be ignored in the mark phase).

• SAC KEEPMEM / SAC FREEMEM . . . Words, used when calling ENDSACLIB() directly for
requesting memory allocated by GCAMALLOC() to be kept / deallocated.

1Lists, integers, polynomials, etc. are structures which are built at runtime. For these no type checking
is done so that the programmer has to make sure that there are no conflicts.

2This is equal to BETA. For historical reasons, in some SACLIB functions BETA is explicitly used instead
of NIL.

63

Below we give a list of the SACLIB global variables as defined in “external.c”:

List processing and garbage collection:

• AVAIL . . . a Word, the list handle of the free list.

• GCGLOBALS . . . a Word, the list handle of the list of global variables.

• BACSTACK . . . a pointer to the beginning of the system stack.

• GCC . . . a Word, the number of garbage collections.

• GCAC . . . a Word, the number of GCA cells collected in all garbage collections.

• GCCC . . . a Word, the number of cells collected in all garbage collections.

• GCM . . . a Word, if GCM is 1, a message is written to the output stream each time
the garbage collector is called.

• NU . . . a Word, one less than the size of the SPACE array in Words, i.e. twice the
number of cells in SPACE.

• RHO . . . a Word, the garbage collector aborts the program if no more than NU/RHO
cells were reclaimed.

• SPACEB . . . a pointer to an array of words, SPACEB = SPACE− BETA.

• SPACEB1 . . . a pointer to an array of words, SPACEB1 = SPACE− BETA1.

• GCAAVAIL . . . a Word, the GCA handle of the free list of GCA cells.

• GCASPACE . . . a pointer to an array of GCArray structures, the memory space for
GCA cells.

• GCASPACEBp . . . a pointer to an array of GCArray structures, GCASPACEBp =
GCASPACE− BETAp.

• NUp . . . a Word, one less than the number of GCArray structures in the GCASPACE
array.

• BETAp . . . a Word, the bound used to distinguish between list and GCA handles.
BETAp = BETA+ NU+ 1.

• BETApp . . . a Word, the upper bound on GCA GCA handles. BETApp = BETAp+
NUp+ 1.

Timing:

• TAU . . . a Word, the time (in milliseconds) spent for garbage collections.

• TAU0 . . . a Word, the system time (in milliseconds) just before SACLIB initial-
ization.

• TAU1 . . . a Word, the system time (in milliseconds) immediately after SACLIB
initialization.

Integer arithmetic:

• DELTA . . . a Word, DELTA = 2⌊ZETA/2⌋.

• EPSIL . . . a Word, EPSIL = 2⌈ZETA/2⌉ = BETA/DELTA.

• ETA . . . a Word, ETA = ⌊log10 BETA⌋.

• RINC . . . a Word, the increment for the random number generator.

• RMULT . . . a Word, the multiplier for the random number generator.

• RTERM . . . a Word, the last value produced by the random number generator.

• TABP2 . . . a pointer to an array of Words, TABP2[i] = 2i−1 for 1 ≤ i ≤ ZETA.

• THETA . . . a Word, THETA = 10ETA.

64

• UZ210 . . . a Word, the list handle of the list of units of Z210.

• ZETA . . . a Word, ZETA = log2 BETA.

Prime numbers:

• NPFDS . . . a Word, the number of primes used by the SACLIB function IUPFDS.

• NPRIME . . . a Word controlling the number of primes in PRIME.

• PRIME . . . a Word, the list handle of the list of primes between BETA− NPRIME ∗
ZETA ∗ 7/5 and BETA.

• NSMPRM . . . a Word, the upper bound on the size of primes in SMPRM.

• SMPRM . . . a Word, the list handle of the list of primes < NSMPRM.

Miscellaneous:

• NPTR1 . . . a Word, the number of Words in the GCAPTR1 array.

• GCAPTR1 . . . a Word, the GCA handle of the array used by the function IUPTR1.

Input/Output:

• LASTCHAR . . . a Word, the last character read from the input stream.

65

Index

BETA, 63
NIL, 4, 63

AADV, 6, 12
absolute value

of a polynomial, 16
ADV, 5
ADV2, 6
ADV3, 6
ADV4, 6
AFCOMP, 47
AFCR, 49
AFDIF, 47
AFDWRITE, 50
AFFINT, 49
AFFRN, 49
AFICR, 49
AFINV, 47
AFNEG, 47
AFPAFP, 47
AFPAFQ, 47
AFPCMV, 48
AFPCR, 49
AFPDIF, 47
AFPDMV, 47
AFPEMV, 48
AFPEV, 48
AFPFIP, 49
AFPFRP, 49
AFPICR, 49
AFPINT, 47
AFPME, 48
AFPMON, 47
AFPNEG, 47
AFPNIP, 48
AFPNORM, 48
AFPPR, 47
AFPQR, 47
AFPROD, 47
AFPSUM, 47
AFPWRITE, 50
AFQ, 47
AFSIGN, 47
AFSUM, 47
AFUPBRI, 48

AFUPFAC, 47
AFUPGC, 48
AFUPGS, 48
AFUPIIR, 49
AFUPIIWS, 49
AFUPMPR, 48
AFUPRB, 48
AFUPRICL, 48
AFUPRICS, 49
AFUPRL, 49
AFUPRLS, 49
AFUPRRI, 49
AFUPRRS, 49
AFUPSF, 48
AFUPSR, 48
AFUPVAR, 49
AFUPWRITE, 50
AFWRITE, 50
AIFAN, 50
algebraic

field element, 46
integer, 46
number, 46
number, real, 46

AMPSAFP, 50
AMSIGN, 47
AMSIGNIR, 47
AMUPBES, 48
AMUPBHT, 48
AMUPIIR, 49
AMUPIIWS, 49
AMUPMPR, 49
AMUPNT, 48
AMUPRICS, 49
AMUPRICSW, 49
AMUPRINCS, 49
AMUPRLS, 49
AMUPRRS, 49
AMUPSR, 48
AMUPTR, 48
AMUPTR1, 48
AMUPVARIR, 49
ANDWRITE, 50
ANFAF, 50
ANIIPE, 47

66

ANPEDE, 47
ANPROD, 47
ANREPE, 47
ANSUM, 47
AREAD, 7
ARGSACLIB, 55
atom, 4
AWRITE, 7

base domain, 16
base ring, 16
basis

coarsest squarefree, 32
finest squarefree, 32

BEGINSACLIB, 55
binary rational number, 41

CCONC, 6
ceiling, 10
cell, 4
CINV, 7
coefficient

leading, 16
leading base, 16
trailing base, 16

cofactors, 32
COMP, 5
COMP2, 5
COMP3, 5
COMP4, 5
composition, 5
CONC, 6
concatenation, 5
constant polynomial, 16
content, 16, 33

integer, 16
univariate, 33

DAND, 12
DEGCD, 11
degree, 16
dense recursive representation, 15
destructive, 5
DGCD, 11
digit, 9

BETA-, 9
GAMMA-, 9
modular, 9

DIIPREAD, 26
DIIPWRITE, 27
DIPDEG, 27
DIPFP, 26
DIPINS, 27
DIRPREAD, 27

DIRPWRITE, 27
discriminant, 32
disjoint intervals, 41
DLOG2, 12
DMPPRD, 27
DMPSUM, 27
DMUPNR, 27
DNIMP, 12
DNOT, 12
DOR, 12
DPCC, 12
DPFP, 27
DPGEN, 11
DPR, 10
DQR, 10
DRAN, 11
DRANN, 11
DSQRTF, 11

element
of a list, 4

ENDSACLIB, 55
EQUAL, 6
EXTENT, 6
extent, 5

factorization
complete, 37
squarefree, 17, 33

FIRST, 6
FIRST2, 6
FIRST3, 6
FIRST4, 6
floor, 10
FOURTH, 6

GC, 62
GC CHECK, 52
GC NO CHECK, 52
GCA2PTR, 53
GCAFREE, 53
GCAGET, 52
GCAMALLOC, 52
GCASET, 52
GCSI, 62

handle
of a GCA, 51
of a list, 4

IABSF, 11
IBCIND, 12
IBCOEF, 12
IBCPS, 12
ICOMP, 11

67

IDEGCD, 11
IDIF, 10
IDIPR2, 12
IDP2, 12
IDPR, 10
IDQ, 10
IDQR, 10
IDREM, 11
IEGCD, 11
IEVEN, 11
IEXP, 11
IFACT, 11
IFACTL, 12
IFCL2, 12
IGCD, 11
IGCDCF, 11
IHEGCD, 11
ILCM, 11
ILCOMB, 12
ILOG2, 12
ILPDS, 11
ILWRITE, 12
IMAX, 11
IMIN, 11
IMP2, 12
IMPDS, 11
INEG, 10
inflectionless isolating interval, 41
inflectionless isolation list, 41
integer, 9

BETA-, 9
GAMMA-, 9
algebraic, 46
modular, 9

integer content, 16
integral polynomial, 16
interval, 41

isolating, 41
acceptable, 46
inflectionless, 41
strongly, 41
weakly, 41

standard, 41
intervals

disjoint, 41
strongly, 41

INV, 7
inverse

of a list, 5
IODD, 11
IORD2, 12
IPABS, 21
IPAFME, 48
IPBEILV, 22

IPBHT, 22
IPBHTLV, 22
IPBHTMV, 22
IPBREI, 22
IPC, 23, 34
IPCEVP, 38
IPCONST, 23
IPCPP, 23, 34
IPCRA, 24
IPCSFB, 35
IPDER, 22
IPDIF, 21
IPDMV, 22
IPDSCR, 35
IPDWRITE, 23
IPEMV, 22
IPEVAL, 22
IPEXP, 21
IPEXPREAD, 23
IPFAC, 38
IPFCB, 38
IPFLC, 38
IPFRP, 23
IPFSD, 24
IPFSFB, 35, 38
IPGCDC, 34
IPGFCB, 38
IPGSUB, 22
IPHDMV, 22
IPIC, 23
IPICPP, 23
IPICS, 23
IPIHOM, 24
IPIIWS, 42
IPINT, 22
IPIP, 21
IPIPP, 23
IPIPR, 24
IPIQ, 21
IPIQH, 38
IPLCPP, 23, 34
IPLRRI, 42
IPMAXN, 23
IPNEG, 21
IPNT, 22
IPONE, 23
IPOWER, 11
IPP2P, 21
IPPGSD, 35
IPPNPRS, 42
IPPP, 23, 34
IPPROD, 21
IPPSC, 35
IPPSR, 21

68

IPQ, 21
IPQR, 21
IPRAN, 23
IPRCH, 41
IPRCHS, 41
IPRCN1, 41
IPRCNP, 41
IPREAD, 23
IPRES, 35
IPRICL, 42
IPRIM, 42
IPRIMO, 42
IPRIMS, 42
IPRIMU, 42
IPRIMW, 42
IPRIST, 42
IPROD, 10
IPRODK, 10
IPRPRS, 36
IPRRII, 42
IPRRLS, 42
IPRRRI, 42
IPRRS, 42
IPSCPP, 23, 34
IPSF, 24, 35
IPSFBA, 35
IPSFSD, 24
IPSIFI, 42
IPSIGN, 21
IPSMV, 22
IPSPRS, 36
IPSRM, 42
IPSRMS, 42
IPSRP, 23
IPSUB, 22
IPSUM, 21
IPSUMN, 23
IPTPR, 24
IPTR, 23
IPTR1, 23
IPTR1LV, 23
IPTRAN, 22
IPTRLV, 23
IPTRMV, 22
IPTRUN, 24
IPVCHT, 42
IPWRITE, 23
IQ, 10
IQR, 10
IRAND, 11
IREAD, 12
IREM, 10
IROOT, 11
ISATOM, 6

ISEG, 12
ISFPF, 38
ISIGNF, 11
ISLIST, 6
ISNIL, 6
ISOBJECT, 6
ISPD, 11
ISPSFB, 35
ISPT, 11
ISQRT, 11
ISSUM, 12
ISUM, 10
ITRUNC, 12
IUPBEI, 22
IUPBES, 22
IUPBHT, 22
IUPBRE, 22
IUPCHT, 43
IUPFAC, 38
IUPFDS, 38
IUPIHT, 22
IUPIIR, 42
IUPNT, 22
IUPQH, 38
IUPQHL, 38
IUPQS, 22
IUPRB, 42
IUPRC, 35
IUPRLP, 42
IUPSR, 21
IUPTPR, 24
IUPTR, 23
IUPTR1, 23
IUPVAR, 43
IUPVOI, 43
IUPVSI, 43
IUSFPF, 38
IWRITE, 12

LASTCELL, 6
LBIBMS, 7
LBIBS, 7
LBIM, 7
LCONC, 6
LDSMKB, 29
LDSSBR, 29
leading base coefficient, 16
leading coefficient, 16
leading term, 16
LEINST, 7
LELTI, 6
LENGTH, 6
length

of a list, 5

69

LEROT, 7
LEXNEX, 7
LINS, 7
LINSRT, 7
list, 4

empty, 4
of characters, 17
of variables, 17

LIST1, 5
LIST10, 5
LIST2, 5
LIST3, 5
LIST4, 5
LIST5, 5
LMERGE, 7
LPERM, 7
LREAD, 7
LSRCH, 6
LWRITE, 8

main variable, 16
MAIPDE, 29
MAIPDM, 29
MAIPHM, 30
MAIPP, 29
MCPMV, 38
MDCRA, 13
MDDIF, 13
MDEXP, 13
MDHOM, 13
MDINV, 13
MDLCRA, 13
MDNEG, 13
MDPROD, 13
MDQ, 13
MDRAN, 13
MDSUM, 13
MEMBER, 6
MIAIM, 30
MICINS, 30
MICS, 30
MIDCRA, 13
MIDIF, 13
MIEXP, 13
MIHOM, 13
MIINV, 13
MINEG, 13
MINNCT, 30
MIPDIF, 24
MIPFSM, 25
MIPHOM, 25
MIPIPR, 24
MIPISE, 38
MIPNEG, 24

MIPPR, 24
MIPRAN, 25
MIPROD, 13
MIPSUM, 24
MIQ, 13
MIRAN, 13
MISUM, 13
MIUPQR, 24
MIUPSE, 38
MMDDET, 29
MMDNSB, 29
MMPDMA, 29
MMPEV, 30
MMPIQR, 25
modular

digit, 9
integer, 9
integral polynomial, 16
polynomial, 16
symmetric, 9

monic polynomial, 16
MPDIF, 24
MPEMV, 25
MPEVAL, 25
MPEXP, 25
MPGCDC, 34
MPHOM, 25
MPINT, 25
MPIQH, 39
MPIQHL, 39
MPIQHS, 39
MPMDP, 24
MPMON, 25
MPNEG, 24
MPPROD, 24
MPPSR, 25
MPQ, 24
MPQR, 24
MPRAN, 25
MPRES, 35
MPSPRS, 36
MPSUM, 24
MPUC, 25, 34
MPUCPP, 25, 34
MPUCS, 25, 34
MPUP, 24
MPUPP, 25, 34
MPUQ, 24
MUPBQP, 39
MUPDDF, 39
MUPDER, 25
MUPEGC, 36
MUPFBL, 38
MUPFS, 39

70

MUPGCD, 35
MUPHEG, 36
MUPRAN, 25
MUPRC, 35
MUPRES, 35
MUPSFF, 25, 35

name
of a variable, 17

negative, 10
non-negative, 10
non-positive, 10
number

algebraic, 46
rational, 10
real algebraic, 46

object, 5
ORDER, 6
order

of a list, 5
of a polynomial, 16

OREAD, 8
OWRITE, 8

PAIR, 8
PBIN, 20
PCL, 21
PCONST, 20
PCPV, 21
PDBORD, 20
PDEG, 20
PDEGSV, 20
PDEGV, 20
PDPV, 20
PERMCY, 7
PERMR, 7
PFBRE, 20
PFDIP, 21, 26
PFDP, 21, 27
PICPV, 21
PINV, 21
PLBCF, 20
PLDCF, 20
PMDEG, 20
PMON, 20
PMPMV, 20
polynomial, 16

constant, 16
dense recursive representation, 15
integral, 16
integral minimal, 46
modular, 16
modular integral, 16

monic, 16
positive, 16
primitive, 16, 33
rational, 16
rational minimal, 46
sparse distributive representation, 15
sparse recursive representation, 15
squarefree, 17, 33

PORD, 20
positive, 10
positive polynomial, 16
PPERMV, 21
PRED, 20
primitive part, 33

univariate, 33
primitive polynomial, 16, 33
PRT, 20
PSDSV, 20
PTBCF, 20
PTMV, 21
PTV, 21
PUFP, 21
PUNT, 20

rational
number, 10
polynomial, 16

RED, 6
RED2, 6
RED3, 6
RED4, 6
REDI, 6
reductum

of a list, 5
of a polynomial, 16

RNABS, 14
RNBCR, 14
RNCEIL, 14
RNCOMP, 14
RNDEN, 14
RNDIF, 14
RNDWRITE, 14
RNFCL2, 14
RNFLOR, 14
RNINT, 14
RNINV, 14
RNMAX, 14
RNMIN, 14
RNNEG, 14
RNNUM, 14
RNP2, 14
RNPROD, 14
RNQ, 14
RNRAND, 14

71

RNREAD, 14
RNRED, 14
RNSIGN, 14
RNSUM, 14
RNWRITE, 14
RPAFME, 48
RPBLGS, 26
RPDIF, 26
RPDMV, 26
RPDWRITE, 26
RPEMV, 26
RPEXPREAD, 26
RPFIP, 26
RPIMV, 26
RPMAIP, 26
RPNEG, 26
RPPROD, 26
RPQR, 26
RPREAD, 26
RPRNP, 26
RPSUM, 26
RPWRITE, 26

SAC FREEMEM, 55
SDIFF, 7
SECOND, 6
SEQUAL, 7
set

unordered, 5
SFCS, 7
SFIRST, 8
side effects, 5
sign

of a polynomial, 16
SINTER, 7
SLELTI, 8
SMFMI, 13
SMFMIP, 25
sparse distributive representation, 15
sparse recursive representation, 15
squarefree

basis
coarsest, 32
finest, 32

divisor, greatest, 33
factorization, 17, 33
polynomial, 17, 33

SRED, 8
standard interval, 41
SUFFIX, 7
SUNION, 7

term
leading, 16

THIRD, 6
trailing base coefficient, 16

univariate content, 33
univariate primitive part, 33
USDIFF, 7
USINT, 7
USUN, 7

variable
list of, 17
main, 16
name, 17

VIAZ, 29
VIDIF, 29
VIERED, 29
VILCOM, 29
VINEG, 29
VISPR, 30
VISUM, 30
VIUT, 30

72

