
 Programmer’s Guide to the DUL Facility

DICOM Communication Using the Upper Layer Protocol

Stephen M. Moore

Mallinckrodt Institute of Radiology
Electronic Radiology Laboratory

510 South Kingshighway Boulevard
St. Louis, Missouri  63110

314/362-6965 (Voice)
314/362-6971 (FAX)

Version 2.10.0

August 3, 1998

This document describes a subroutine library which
allows DICOM applications to establish Associations and
to exchange data as described in Part 8 of the DICOM
Standard.

 Copyright (c) 1995 RSNA, Washington University
/wuerlb/documentation/dicom/facilities/dulprotocol.frm



 hold-

SI,

fine
nment

 a

he ini-
 the
DU and
U.

The
s

1 Introduction

This facility implements the DICOM Upper Layer (DUL) protocol as specified in:
ACR-NEMA V3.0 - Digital Image and Communications in Medicine (DICOM)
Part 8: Network Communication Support for Message Exchange.

This implementation is based on the draft of the standard dated March 27, 1992.

This facility contains functions in three general classes:

• Establish Associations

• Close Associations

• Read/Write Data

Associations are supported on TCP/IP using Berkeley-style sockets.  The facility has place
ers for other protocols (OSI), but no other protocols are implemented as of this writing.

1.1 Network Environments

This facility provides mechanisms for supporting different types of network environments (O
TCP/IP).  However, this version only implements support for TCP/IP.  Each application is
required to identify its network environment and at that time provide information that will de
the application as an Association Requestor, an Acceptor or both.  Once the network enviro
has been established, an application can request or accept Associations.

1.2 Establishing Associations

An Association is established by the following sequence:

• Requestor initiates Association by choosing a network protocol (TCP/IP) and calling
Receiver at a known address.

• Receiver examines Requestor’s call and determines if it wants to communicate with
Requestor.

• Receiver replies to Requestor.

• Requestor examines reply to determine if it is appropriate.

The Requestor transmits an Associate Request (RQ) Protocol Data Unit (PDU) as part of t
tialization sequence.  This PDU contains a number of fixed and variable fields which define
type of Association the Requestor wishes to establish.  The Receiver parses the Request P
responds with an Associate Request Accept PDU or with an Associate Request Reject PD

Once the Association is established, the Requestor and Acceptor communicate as peers.  
“driver” of the conversation is determined by the type of Association that was established a
defined by the Associate RQ PDU.  The DICOM Standard allows either application to send
1/30



message
ages are

 closing

wl-

g an

ppli-

pplica-
losed

t-
ata

ent or

it-
 Pre-

hich
ns to
st of
any

iation
on Con-
n be

tation
uested
request messages once the Association is established.  Which application sends a request 
is determined by SCU/SCP roles and by the type of request message. Some request mess
sent by SCUs; other request messages are sent by SCPs.

1.3 Closing Associations

Associations can be closed or destroyed by either peer.  There are several mechanisms for
an Association:

• The application that initiated the Association asks that the Association be torn down
gracefully by transmitting a Release Request.  It is expected that the peer will ackno
edge this request.

• Either application asks that the Association be torn down immediately by transmittin
Abort Request (and then closing the network connection).

• Either application abnormally terminates the network connection (for example, the a
cation dies).

This facility provides the functions for the Release and Abort requests.  It also notifies the a
tion when the peer requests a Release or Abort or when the network connection is simply c
to allow the application to recover gracefully.  Applications should always use the functions
DUL_DropNetwork and DUL_DropAssociation to perform the final close function for the ne
work or Association.  The act of aborting or releasing an Association does not destroy the d
structures associated with the Association.  To maintain symmetry, every network environm
Association (identified by a DUL_NETWORKKEY or DUL_ASSOCIATIONKEY) should be
destroyed with the appropriate drop function.

1.4 Transmitting Data

DICOM message fragments (part of DICOM COMMAND or DICOM DATASET) are transm
ted between applications by including them in P-DATA PDUs.  Each fragment  is stored in a
sentation Data Value Item (PDV).  A number of PDVs can be linked to form a list of PDVs w
can be transmitted in a single P-DATA PDU.  This facility provides the means for applicatio
send a list of PDVs to another application using an established Association and to read a li
PDVs.  It enforces the rules which limit the total length of a list of PDVs that can be sent in 
single P-DATA PDU.

1.5 Presentation Contexts/SOP Classes

Parts 4 and 8 of the DICOM Standard define how SOP classes are requested on an Assoc
and the Presentation Context that is maintained for each requested SOP class.  Presentati
texts are identified by a simple numerical value when the Association is established and ca
used to switch context during the period when the Association is established.

This facility allows the user to request multiple SOP classes by maintaining a List of Presen
Contexts.  The requestor creates a new Presentation Context for each SOP class to be req
2/30



pted or
ne Pre-
ion
ructs the

ard.
rrupts
lication
 This
arriv-
ent
 event.

 hold-

fined in

ibe the
and passes the list to the DUL facility.  The DUL response marks each SOP Class as acce
rejected.  Likewise, an acceptor can support multiple SOP classes and accept more than o
sentation Context.  The DUL facility presents an acceptor with a list of proposed Presentat
Contexts.  The acceptor marks the Presentation Contexts to accepted and rejected and inst
DUL facility to send the appropriate response PDU.

1.6 Implementation Details

This facility is  based on a finite state machine as defined in Part 8 of the DICOM V3 Stand
The machine is driven by requests from the application.  The DUL facility does not use inte
to sense when data arrives on the network.  It only checks for network events when the app
calls a DUL function.  Thus, it is up to the application to call DUL functions to request data. 
facility provides no means to interrupt the application to inform it of an event (such as data 
ing on the network or the network closing).  There may be some time between when an ev
occurs (e.g., the network closed by peer) and when the DUL facility notifies the user of the

This facility implements the DICOM Upper Layer (DUL) protocol as specified in:
ACR-NEMA V3.0 - Digital Image and Communications in Medicine (DICOM)
Part 8: Network Communication Support for Message Exchange.

This implementation is based on the draft of the standard dated March 27, 1992.

This facility contains functions in three general classes:

• Establish Associations

• Close Associations

• Read/Write Data

Associations are supported on TCP/IP using Berkeley-style sockets.  The facility has place
ers for other protocols (OSI), but no other protocols are implemented as of this writing.

2 Data Structures

2.1 Network and Association Keys

This facility defines two keys or handles that are opaque to the programmer.  These are de
the “dulprotocol” include file as:

DUL_NETWORKKEY
DUL_ASSOCIATIONKEY

These keys are used when a network is initialized or an Association is established to descr
network environment or Association.  They refer to structures maintained by the facility.
3/30



ion or

OM

d.
All functions in this facility require that the user declare variables as pointers to these keys:

DUL_NETWORKKEY *network

DUL_ASSOCIATIONKEY *association

These keys are then passed by reference to the functions in this facility:

DUL_Function(&network, &association)

This rule is used for all functions, whether the object is to be created or written by the funct
merely referenced by the function.

2.2 Associate Service Parameters

The parameters needed to describe an Association are conveyed in a structure named
DUL_ASSOCIATESERVICEPARAMETERS. The “C” declaration for this structure is:

typedef struct {
  char applicationContextName[DUL_LEN_NAME + 1];
  char callingAPTitle[DUL_LEN_TITLE + 1];
  char calledAPTitle[DUL_LEN_TITLE + 1];
  char respondingAPTitle[DUL_LEN_TITLE + 1];
  unsigned short result;
  unsigned short resultSource;
  unsigned short diagnostic;
  char callingPresentationAddress[64];
  char calledPresentationAddress[64];
  LST_HEAD *requestedPresentationContext;
  LST_HEAD *acknowledgedPresentationContext;
  unsigned short maximumOperationsInvoked;
  unsigned short maximumOperationsPerformed;
  char callingImplementationClassUID[DICOM_UI_LENGTH +1];
  char callingImplementationVersionName[16 + 1];
  char calledImplementationClassUID[DICOM_UI_LENGTH + 1];
  char calledImplementationVersionName[16 + 1];
  unsigned long peerMaxPDU;
}   DUL_ASSOCIATESERVICEPARAMETERS;

The fields are defined below.   Definitions in  italics are quoted directly from part 8 of the DIC
V3 draft.

applicationContextName The application context name.  This is taken directly from the Standar

callingAPTitle This parameter identifies the Application Process (AP) that shall contain
the requestor of the A-ASSOCIATE service.

calledAPTitle This parameter identifies the Application Process that shall contain the
intended acceptor of the A-ASSOCIATE service.
4/30



f the

 to

he

 in

iguous

iguous

sted

wl-
 the
 in

nchro-

nchro-

art 7,

ame

rit-

 a
respondingAPTitle This parameter identifies the AP that shall contain the actual acceptor o
A-ASSOCIATE service.

maxPDU The maximum length of the list of Presentation Data Values you expect
receive in a P-DATA PDU.

result This corresponds to the result field in an A-ASSOCIATE-RJ PDU in the
event that an Association Request is rejected.

resultSource This corresponds to the Source field in an A-ASSOCIATE-RJ PDU in t
event that an Association Request is rejected.

diagnostic This corresponds to the Reason/Diag field in an A-ASSOCIATE-RJ PDU
the event that an Association Request is rejected.

callingPresentationAddress This parameter shall contain a structured destination address unamb
within the global network address structure.  This shall be either an OSI
Presentation Address or a TCP/IP address.

calledPresentationAddress This parameter shall contain a structured destination address unamb
within the global network address structure.  This shall be either an OSI
Presentation Address or a TCP/IP Address.

requestedPresentationContext A list of DUL_PRESENTATIONCONTEXT items which are the reque
Presentation Contexts. A requestor creates this list.  The DUL routines
parse Associate RQ PDUs and creates this list to present to acceptors.

acknowledgedPresentationContext A list of DUL_PRESENTATIONCONTEXT items which are the ackno
edged Presentation Contexts.  An acceptor creates this list by examining
list of requested Presentation Contexts and adding an entry for each item
the requested list.  The Presentation Context can be either accepted or
rejected

maximumOperationsInvoked A placeholder for a value which is used when the user negotiates asy
nous operations. Because our toolkit does not support this, the value is
forced to 0 and ignored.  See Part 8, sections D.3.3.3.1 and D.3.3.4.

maximumOperationsPerformed A placeholder for a value which is used when the user negotiates asy
nous operations. Because our toolkit does not support this, the value is
forced to 0 and ignored.  See Part 8, sections D.3.3.3.1 and D.3.3.4

callingImplementationClassUID  ... identifies in a unique manner a specific class of implementation (P
Section D.3.3.2).  A caller writing a requesting application must fill in a
legal UID.  The facility will parse an A-ASSOCIATE RQ and present this
value to a caller writing an accepting application.

callingImplementationVersionName ...an option (which) is provided to convey an Implementation Version N
(Part 8, Secion D.3.3.2). This is an optional field.  A caller writing a
requesting application should fill in ““ or a legal string.  The facility will
parse an A-ASSOCIATE RQ and present this value to a caller writing an
accepting application.

calledImplementationClassUID The Implementation Class UID of the receiving application. A caller w
ing a receiving application must fill this field with a legal UID.  The facility
will parse an A-ASSOCIATE RP and present this value to a caller writing
requesting application.
5/30



ATE
 RQ
cture,

.

P”
 of the
 this
hich is

 con-
field. In
ber
 the

rmi-
ing
Us is

s an

e
g

dur-
I-
In general, the requestor allocates this structure and fills in some of the fields (see
DUL_RequestAssociation).  The DUL facility uses this structure to construct an A-ASSOCI
RQ PDU and transmits it to an acceptor.  The DUL facility used by the acceptor parses the
PDU and returns the structure to the acceptor application.  The acceptor examines the stru
fills in its fields and accepts the Association (if appropriate).

Several constants define maximum length fields as specified by the DICOM V3 Part 8 draft
These are DUL_LEN_NAME and DUL_LEN_TITLE.

The presentation addresses defined by the draft standard are “OSI Presentation” or “TCP/I
addresses.  This version of the software only supports TCP/IP.  This facility uses the name
node for the unambiguous TCP/IP address.  The facility also includes the port number with
address as part of the calledPresentationAddress.  Thus, to call an acceptor at node “fred” w
listening on port 104, you would use the following for the calledPresentationAddress:

fred:104

When the facility accepts a TCP/IP connection, it finds the name of the node requesting the
nection based on the IP address and places that name in the “callingPresentationAddress” 
this implementation, any domain information is stripped. The decision to place the port num
with the calledPresentationAddress allows applications to specify a port number and allows
DUL facility to ignore the mapping from Title/Pr Address to port number.

This facility treats all of the items above which are declared as character arrays as NULL te
nated ASCII strings.  This allows the facility and applications to use the normal run-time str
functions.  The mapping to fixed and variable-length fields in the Associate RQ and AC PD
handled by the DUL software.

2.3 Reject and Abort Parameters

The DUL facility implements the reject and abort services with a common data structure
DUL_ABORT. This structure’s members are:

unsigned char   result
unsigned char   source
unsigned char   reason

calledImplementationVersionName The implementation version name of the receiving application.  This i
optional field which should be set to ““ or a legal string by the writer of a
receiving application. If the value is present in the A-ASSOCIATE RP, th
facility will parse the value and present it to the caller writing a requestin
application.

peerMaxPDU The maximum PDU value that was transmitted by the peer application 
ing association negotiation, either in an A-ASSOCIATE RQ or A-ASSOC
ATE RP message.
6/30



 in the
jects
hen

ists
t con-

:

 list
When an application requests a reject or abort, it uses the structure defined above and fills
appropriate fields to define the reason for the reject or abort.  Note that  result is used for re
and is ignored for aborts. The include file defines macro constants which should be used w
writing or reading this structure.

2.4 Presentation Data Values

A Presentation Data Value encompasses a single fragment of a DICOM COMMAND or
DATASET.  A COMMAND is defined by the data elements in group 0000.  A DATASET cons
of data elements not in the COMMAND group.  A single Presentation Data Value should no
tain both COMMAND and DATASET information.

This facility uses the DUL_PDV structure to describe an individual Presentation Data Value

unsigned long                   fragmentLength
DUL_PRESENTATIONCONTEXTID       presentationContextID
DUL_DATAPDV                     pdvType
BOOLEAN                         lastPDV
void                            *data

The fields are defined as follows:

A single P-DATA PDU may contain multiple PDVs.  The DUL_PDVLIST structure defines a
of PDVs:

unsigned long                   count;
void                            *scratch;
unsigned long                   scratchLength;
DUL_ABORTITEMS                  abort;
DUL_PDV                         *pdv;

fragmentLength The length of the data fragment (in bytes).

presentationContextID The presentation context ID for this Presentation Data Value.

pdvType An enumerated type that is one of:
DUL_COMMANDPDV
DUL_DATASETPDV

lastPDV A BOOLEAN flag indicating if this is the last fragment in a
COMMAND or DATASET.

data The pointer to the actual data.
7/30



re.

rt

t

cia-

).
The fields in the structure are defined as follows:

3 Include Files

All applications that use the DUL facility should include these files in the following order:

#include “dicom.h”
#include “condition.h”
#include “lst.h”
#include “dulprotocol.h”

4 Return Values

count The number of PDVs in this list of PDVs.

scratch A buffer allocated by the application when reading PDVs.
Please refer to DUL_ReadPDVs.

scratchLength The length of the scratch buffer allocated by the user.  Please
refer to DUL_ReadPDVs.

abort The structure which contains the information about an abort
request.  This is filled in by the DUL_ facility when a caller
attempts to read PDVs and the peer aborts the Association.

pdv The pointer to the first PDV in the sequential list of PDVs.
Individual PDV items are allocated sequentially beginning
with this item.

DUL_ABORTEDREQUEST Request for Association was aborted during the setup process.

DUL_APABORT Indication of Service Provider initiated abort. Abort initiated by
DICOM DUL function, not by an application.

DUL_ASSOCIATIONPARAMETERFAILED  Failed to return a value from the association parameter structu

DUL_ASSOCIATIONREJECTED Request for Association rejected by peer.

DUL_CODINGERROR Software failed internal checks. Indicates coding error on the pa
of the facility writer.

DUL_FSMERROR DUL FSM had a run time error.  Probably indicates that an even
happened that was not expected given the current state.

DUL_ILLEGACCEPT An application registered as a requestor tried to accept an asso
tion.

DUL_ILLEGALKEY Illegal key (DUL_NETWORKKEY or
DUL_ASSOCIATIONKEY) passed to DUL function.

DUL_ILLEGALPARAMETER Caller passed an illegal parameter (the value was probably bad
8/30



-

-

r

.

e.

er.
DUL_ILLEGALPDU Illegal or ill-formed PDU received from peer.

DUL_ILLEGALPDULENGTH DUL facility detected a PDU from the network with an illegal
length. Probably indicates the length was greater than the max
value established during association negotiation.

DUL_ILLEGALREJECTREASON Caller attempted to reject Association with illegal Reason param
eter.

DUL_ILLEGALREJECTRESULT Caller attempted to reject Association with illegal Result parame
ter.

DUL_ILLEGALREQUEST Illegal request made by caller. For example, caller attempted to
write PDU before an Association was established.

DUL_ILLEGALSERVICEPARAMETER Function detected illegal service parameter. Nominally sensed
when requesting or accepting Associations.

DUL_INCORRECTBUFFERLENGTH Caller allocated incorrect buffer length when requesting data (fo
example, allocated too many or too few bytes for an integer).

DUL_INSUFFICIENTBUFFERLENGTH Caller allocated insufficient buffer length to hold requested data

DUL_LISTCREATEFAILED A DUL function failed to create a new list.

DUL_LISTERROR An error occurred in a DUL function when trying to perform a
LST function

DUL_KEYCREATEFAILURE Function failed to create a key, likely due to memory allocation
failure.

DUL_MALLOCERROR Function failed to allocate memory.

DUL_NETWORKCLOSED Network connection is closed. No more communication possibl

DUL_NETWORKINITIALIZED Attempt to initialize a network environment twice.

DUL_NOASSOCIATIONREQUEST No outstanding requests for Associations for this network listen

DUL_NOCONNECTION Network connection refused during Association request (remote
node did not respond to connect request).

DUL_NORMAL Normal return from DUL function.

DUL_NOPDVS No PDVs available in current buffer.

DUL_NULLKEY Caller passed NULL key to DUL function.

DUL_READTIMEOUT Network code timed-out when waiting for data.

DUL_PCTRANSLATIONFAILURE Presentation context translation failure.

DUL_PDATAPDUARRIVED P-DATA PDU arrived from connected peer.

DUL_PEERABORTEDASSOCIATION Peer application aborted Association.

DUL_PEERDROPPEDASSOCIATION Peer application dropped Association with notification.

DUL_PEERILLEGALXFERSYNTAXCOUNTPeer supplied illegal number of transfer syntaxes.

DUL_PEERREQUESTEDRELEASE Peer application requested release.

DUL_READTIMEOUT Time-out when waiting for packet to arrive from network.

DUL_RELEASECONFIRMED Peer confirmed Release Request.

DUL_REQUESTASSOCIATIONFAILED Request to establish Association failed.

DUL_TCPINITERROR TCP Network initialization error.

DUL_TCPIOERROR TCP error when reading from or writing to network.

DUL_UNEXPECTEDPDU Unexpected PDU received from peer.

DUL_UNKNOWNHOST User attempted to make a connection to an unknown host.
9/30



e.
t.
5 DUL Routines

This section provides detailed documentation for each DUL facility routine.

DUL_UNKNOWNREMOTENODE Association Request received from unknown remote node.

DUL_UNRECOGNIZEDAE Unrecognized Application Entity type (not AE_REQUESTOR or
AE_ACCEPTOR).

DUL_UNRECOGNIZEDPDUTYPE Unrecognized PDU type received from peer.

DUL_UNSUPPORTEDNETWORK User attempted to initialize (or use) an unsupported network typ
This version of the code only implements a TCP/IP environmen

DUL_UNSUPPORTEDPEERPROTOCOL DUL facility detected a PDU from a peer with an unsupported
protocol.

DUL_WRONGASSOCIATIONSTATE DICOM finite state machine in the wrong state for request made
or received an unexpected event.

DUL_WRONGDATATYPE Caller specified wrong data type for an attribute when trying to
obtain data from DUL facility.
10/30



ork

-
 close

s the

 value
 the
DUL_AbortAssociation

Name

DUL_AbortAssociation - abort an Association by sending an A-ABORT PDU and waiting for the netw
to close.

Synopsis

CONDITION DUL_AbortAssociation(ASSOCIATION_KEY **association)

association The handle for the Association to be aborted.

Description

DUL_AbortAssociation is called by an application to abort an Association.  This function causes an A
ABORT PDU to be sent to the connected peer.  The function then waits for the network connection to
or for the network timer to expire.  After the network is closed or the timer expires, this function close
applications connection to the network.

After the Association is aborted, the caller must destroy the reference to association by calling
DUL_DropAssociation.

Notes

The DICOM Upper Layer protocol states that the user of the DUL service cannot specify a significant
for the reason field in the A-ABORT PDU.  Therefore, this function provides no interface for providing
caller a means to specify the reason for the abort request.

Return Values

DUL_NORMAL
DUL_NULLKEY
DUL_ILLEGALKEY
DUL_NETWORKCLOSED
11/30



tion.

ed).

 It uses
nsmit-
 applica-

n

O 8824
ic

ll
ecified

r

DUL_AcknowledgeAssociationRQ

Name

DUL_AcknowledgeAssociationRQ - acknowledge an Associationrequest and to establish an Associa

Synopsis

CONDITION DUL_AcknowledgeAssociationRQ(DUL_ASSOCIATIONKEY **association,
DUL_ASSOCIATESERVICEPARAMS *params)

association Caller’s handle to Associationwhich is to be acknowledged (and therefore establish

params Parameters which describe the type of service to be handled by this Association.

Description

DUL_AcknowledgeAssociationRQ is used by an acceptor to acknowledge an Association Request.   
the service parameters supplied in params to construct an A-ASSOCIATE AC PDU.  This PDU is tra
ted to the requestor, thereby establishing an Association.  Once the Association is established, either
tion can transmit data (depending on the type of Association established).

This function is to be called after the application has received an Association Request via the functio
DUL_ReceiveAssociationRQ.  The caller must use the same params buffer initialized by the call to
DUL_ReceiveAssociationRQ.  The caller is responsible for supplying these fields:

respondingAPTitle
maxPDUReceive
acknowledgedPresentationContext

The caller may offer a different application context by modifying the applicationContextName field of
params.

Notes

The applicationContextName, abstractSyntax and transferSyntax fields of params are based on the IS
standard (as stated in Part 8 of the DICOM V3 draft). These identifiers are encoded as ASCII numer
strings with “.” separators.

The maxPDUReceive field allows the application to define the maximum length of a list of PDVs it wi
receive in a single P-DATA PDU.  This value is not necessarily the same as the value the peer has sp
for its maximum length.

The acknowledgedPresentationContext is the list of Presentation Contexts that are either accepted o
rejected.

Return Values

DUL_NORMAL
DUL_NULLKEY
DUL_ILLEGALKEY
DUL_ILLEGALREQUEST
12/30



-

release
pplica-

ined in
y calls to
DUL_AcknowledgeRelease

Name

DUL_AcknowledgeRelease - acknowledge a release request from a peer application by sending an A
RELEASE RP PDU.

Synopsis

CONDITION DUL_AcknowledgeRelease(DUL_ASSOCIATIONKEY**association)

association Caller’s handle to Association which is currently active.

Description

DUL_AcknowledgeRelease is used by an application to acknowledge a peer application’s request to 
an active association.  This function formulates and transmits an A-RELEASE RP PDU to the peer a
tion and closes the network transport.

Notes

This function does not destroy the association key nor does it release any of the lists which are mainta
the association parameters for this association.  The key and service parameters should be cleaned b
DUL_DropAssociation and DUL_ClearServiceParameters.

Return Values

DUL_NORMAL
DUL_NULLKEY
DUL_ILLEGALKEY
13/30



estab-

or
ation
ters
ocia-
ating an
DUL_ClearServiceParameters

Name

DUL_ClearServiceParameters - clear the lists and other parameters created when an association is 
lished.

Synopsis

CONDITION DUL_ClearServiceParameters(DUL_ASSOCIATESERVICEPARAMETERS *params)

params    Pointer to caller allocated structure to be cleared.

Description

DUL_ClearServiceParameters is used by an application after an association is terminated (normally 
abnormally).  When an association is created, the DUL facility fills a parameters structure with inform
that describes the association.  If this structure is to be reused for another association, these parame
should be cleared.  This keeps the DUL facility from being fooled by parameters from a previous ass
tion.  This is also good practice because it frees up memory that was allocated by the process of cre
association.

Return Values

DUL_NORMAL
14/30



he
DUL_Debug

Name

DUL_Debug - turn off or on debugging output from DUL facility.

Synopsis

void DUL_Debug(BOOLEAN flag)

flag Flag indicating if DUL facility is run in debug mode (TRUE) or silent mode (FALSE).

Description

DUL_Debug sets a flag in the DUL facility which puts it in the debug mode or silent mode.  When in t
debug mode, information of use to developers is printed to standard error.
15/30



struc-

s)

 into a
gth,
d to fill
DUL_DefaultServiceParameters

Name

DUL_DefaultServiceParameters - load a set of default parameters into a caller’s service parameters 
ture.

Synopsis

void DUL_DefaultServiceParameters(DUL_ASSOCIATESERVICEPARAMETERS *param

params Pointer to a structure in caller’s space that will be loaded by this function.

Description

DUL_DefaultServiceParameters is used by applications that want to load a default set of parameters
DUL_ASSOCIATESERVICE PARAMETERS structure.  Such defaults include the maximum PDU len
the application context name, the implementation class as well as other values. The user will still nee
in some values that cannot be loaded as defaults.

Return Values

None
16/30



ller’s

socia-

ation

an also
 also

all.  If
 can be
ion to
DUL_DropAssociation

Name

DUL_DropAssociation - drop an Association without notifying the peer application and destroy the ca
reference to the Association.

Synopsis

CONDITION DUL_DropAssociation(DUL_ASSOCIATIONKEY **association)

association Caller’s handle to the Association to be dropped.

Description

This function drops an Association without notifying the peer application and destroys the caller’s As
tion Key. The caller’s reference to the Association Key is also destroyed to prevent misuse.

This function is called after the application senses an abort or release from its peer or after the applic
has successfully aborted or released an Association.

Notes

The “normal” use of this function is after an Association has been released or aborted.  The function c
be used to force the network connection to close without formally notifying the peer.  This feature can
be used to test DUL implementations to determine how they handle network disruption.

This function is also used in the Unix environment for applications that wish to use the “fork” system c
an application forks with an established Association, both the parent and child will have a handle that
used to communicate with the peer.  One of either the parent or child should call DUL_DropAssociat
destroy the Association and let the other process communicate with the peer.

Return Values

DUL_NULLKEY
DUL_ILLEGALKEY
DUL_NORMAL
17/30



 when
ould
-

 net-

 that is
DUL_DropNetwork

Name

DUL_DropNetwork - drop the network connection established by DUL_InitializeNetwork

Synopsis

CONDITION DUL_DropNetwork(DUL_NETWORKKEY **network)

network Caller’s handle to the network environment.

Description

DUL_DropNetwork is used to release any resources associated with the network that were obtained
calling DUL_InitializeNetwork or other DUL network functions.  This is a shutdown procedure that sh
be called as your application is exiting or when you have decided you want to perform no further DUL
based network activity.

When DUL_DropNetwork has disposed of network resources, it writes a NULL value into the caller’s
work handle to prevent future use by the caller.

Notes

This function is not called to drop individual associations.  The effect may be to drop associations, but
not the intent of this function.

Return Values

DUL_NULLKEY
DUL_ILLEGALKEY
DUL_NORMAL
18/30



tion.

 and
DUL_DumpParams

Name

DUL_Dump_Params - dump the contents of a DUL_ASSOCIATESERVICEPARAMETERS structure.

Synopsis

void DUL_DumpParams(DUL_ASSOCIATESERVICEPARAMETERS *params)

params Pointer to caller’s structure which contains parameters used to establish an Associa

Description

DUL_DumpParams examines the contents of a DUL_ASSOCIATESERVICEPARAMETERS structure
dumps the information to the standard output.

Notes

This is most often used as a debugging tool.

Return Values

None
19/30



on-

.

e
uch as
rns it to

d in the

 is
ber

eout

mati-
ller
DUL_InitializeNetwork

Name

DUL_InitializeNetwork - initialize network environment and return a handle which describes the envir
ment.

Synopsis

CONDITION DUL_InitializeNetwork(char *networkType, char *mode, void *param,
int timeout, unsigned long options, DUL_NETWORKKEY **networkKey)

networkType One of a set of predefined constants which describe the type of
network environment requested.

mode NULL-terminated ASCII string identifying the application as a requestor or acceptor
Caller should use one of the  constants DUL_AEREQUESTOR,
DUL_AEACCEPTOR, or DUL_AEBOTH.

param A parameter which is specific to the network type, which may be needed to
initialize the network.

timeout Length of time (in seconds) for TIMER time-out. If 0, the function will use a
default value.

options Bitmask which describes options to be used when initializing the network.

networkKey The handle created by this function and returned to the caller to access this
network environment.

Description

DUL_InitializeNetwork identifies the network environment requested by the application and defines th
mode of the application (requestor, acceptor or both).  Network setup is performed by this function (s
setting up a socket to listen for inbound requests).  After setup, the function creates a handle and retu
the caller for use in establishing Associations.

networkType defines the type of network requested.  The caller should use one of the constants define
include file for this facility.  The only network type that is supported by this version of the software
isDUL_NETWORK_TCP.

param is a network and mode-specific argument needed to initialize the network.  If the network type
TCP/IP and the application is an acceptor, param is the address of an integer containing the port num
used to accept TCP connections.

timeout is used to set a global value for timeouts for network operations for the DUL routines.  This tim
may be overridden in individual functions by passing an explicit timeout parameter.

options defines special options which are used in the network environment.  The caller should mathe
cally OR the desired options. Two types of options are defined in this version of the software.  The ca
20/30



L

hen
UL

rl).  If
he
 entered
RQ.

L soft-
must use the flag DUL_ORDERBIGENDIAN defined in the DUL include file.  This defines that the DU
protocol will be implemented using big-endian byte ordering of data on the network.

The second option controls how the DUL facility returns remote host names to callers (for example, w
your application is accepting Associations from remote nodes). If the caller specifies no option, the D
facility truncates remote host names after the machine name (wuerl.wustl.edu gets truncated to wue
the caller specifies DUL_FULLDOMAINNAME, the DUL facility will not  truncate the domain name.  T
actual name that gets returned will depend on how your system resolves host names and how data is
in your host table.  The effect of this option is seen when the caller invokes DUL_ReceiveAssociation

Notes

As a side effect, this function initializes the state table for the finite state machine that controls the DU
ware.

Return Values

DUL_UNSUPPORTEDNETWORK
DUL_UNRECOGNIZEDAE
DUL_KEYCREATEFAILURE
DUL_NETWORKINITIALIZED
DUL_NORMAL
21/30



t or

g
ing

on

.

ed
 a
DUL_MakePresentationCtx

Name

DUL_MakePresentationCtx - create one presentation context for inclusion in an Association Reques
Association Acknowledgement

Synopsis

CONDITION DUL_MakePresentationCtx(DUL_PRESENTATIONCONTEXT **ctx,
DUL_SC_ROLE proposedSCRole, DUL_SC_ROLE acceptedSCRole,
DUL_PRESENTATIONCONTEXTID ctxID, unsigned char result,
char *abstractSyntax, char *transferSyntax, ...)

ctx Address of caller’s presentation context pointer. This function allocates memory for a
presentation context structure and places the address of the structure in the caller’s
ctx pointer.

proposedSCRole The proposed service class role for this presentation context.  If a user is requestin
an association, the user can propose any role (as listed below).  If the user is accept
an Association, the user should copy the proposed value from the Association
Request into this argument.  Legal values for this argument are:

DUL_SC_ROLE_DEFAULT
DUL_SC_ROLE_SCU
DUL_SC_ROLE_SCP
DUL_SC_ROLE_SCUSCP

acceptedSCRole The service class role that is accepted by an application operating as an Associati
acceptor.  Legal values are listed above for the proposedSCRole argument.
Applications that are requesting Associations should use DUL_SC_ROLE_DEFAULT

ctxID A user-defined presentation context ID that identifies this presentation context.
Context IDs are odd numbers between 1 and 255.  An application that is an
Association acceptor must use the same presentation context ID as proposd by the
Association requestor.

result For Association acceptors, a value which indicates if the presentation context
was accepted or rejected.  Legal values are:

DUL_PRESENTATION_ACCEPT
DUL_PRESENTATION_REJECT_USER
DUL_PRESENTATION_REJECT_NOREASON
DUL_PRESENTATION_REJECT_ABSTRACT_SYNTAX
DUL_PRESENTATION_REJECT_TRANSFER_SYNTAX

abstractSyntax The unique identifier (defined by NEMA or privately) that identifies the proposed
SOP class.

transferSyntax One or more unique identifiers that identify the transfer syntax that is being propos
by an Association initiator.  If the application is an Association acceptor, can only be
single UID.  This set of transfer syntaxes must be terminated with the value NULL,
22/30



n
ct a pre-

ress of
e.g.,DICOM_TRANSFERLITTLEENDIAN,
DICOM_TRANSFERLITTLEENDIANEXPLICIT, NULL

Description

DUL_MakePresentationCtx is used to construct a single presentation context by a DICOM Associatio
Requestor or by an Association Acceptor.  The caller supplies parameters which are used to constru
sentation context that can be stored in a DUL_ASSOCIATESERVERPARAMETERS structure.
DUL_MakePresentationCtx allocates memory for a structure, fills in the structure and returns the add
the allocated structure to the caller.

Return Values

DUL_NORMAL
DUL_LISTCREATEFAILED
DUL_LISTERROR
DUL_MALLOCERROR
23/30



a PDV

this
PDVs
the
DUL_NextPDV

Name

DUL_NextPDV - return the next PDV that has been read from the network to the caller

Synopsis

CONDITION DUL_NextPDV(DUL_ASSOCIATIONKEY **association, DUL_PDV *pdv)

association Caller’s handle for the Association.

pdv Pointer to DUL_PDV structure allocated by caller. This function fills in this structure
upon successful completion.

Description

DUL_NextPDV returns the next PDV that has already by read from the network.  The caller allocates 
structure which is filled in by DUL_NextPDV. If there is no PDV available, the function returns
DUL_NOPDVS.

Notes

The behavior of this function and DUL_ReadPDVs is confusing.  Users who want a PDV should call 
function to see if a PDV exists in the current buffer.  If no PDV exists, the user should call DUL_Read
to read another set of PDVs from the network and then call DUL_NextPDV again to actually retrieve 
PDV from the buffer.

Return Values

DUL_NORMAL
DUL_NULLKEY
DUL_ILLEGALKEY
DUL_NOPDVS
24/30



he
That is,

 the
e

DUL_ReadPDVs

Name

DUL_ReadPDVs - read the next available set of PDVs in one PDU.

Synopsis

CONDITION DUL_ReadPDVs(DUL_ASSOCIATIONKEY **association,
DUL_PDVLIST *pdvList, DUL_BLOCKOPTIONS block, int timeout)

association Caller’s handle for the Association used to read the PDVs.

pdvList No longer used

block Flag indicating how read for PDU should be done (blocking/non blocking) timeout
Timeout in seconds if reading in non-blocking mode.

Description

DUL_ReadPDVs reads the next set of PDVs available on an association by reading the next PDU.  T
PDVs are maintained with the association key and are accessed by the user through DUL_NextPDV.  
this call does not return a PDV directly to the caller.

The function can operate in blocking or non blocking mode when receiving data from the network.  If
caller wishes not to block, the timeout argument defines how long DUL_ReadPDVs should wait befor
returning without having read a PDU.

Notes

The relationship between this function and DUL_NextPDV is more difficult than it should be.

The pdvList parameter is a remnant from previous code and should be eliminated in the future.

Return Values

DUL_NORMAL
DUL_NULLKEY
DUL_ILLEGALKEY
DUL_ILLEGALREQUEST
DUL_NETWORKCLOSED
DUL_PEERREQUESTEDRELEASE
DUL_PEERABORTEDASSOCIATION
DUL_PEERDROPPEDASSOCIATION
25/30



f

equest
rt of
dle

 reject

take
request
DUL_ReceiveAssociationRQ

Name

DUL_ReceiveAssociationRQ - read the next outstanding Association Request PDU for the purpose o
accepting an Association.

Synopsis

CONDITION DUL_ReceiveAssociationRQ(DUL_NETWORKKEY **network,
DUL_BLOCKOPTIONS block,
DUL_ASSOCIATESERVICEPARAMETERS *params,
DUL_ASSOCIATIONKEY  **association)

network Caller’s handle returned by call to DUL_InitializeNetwork. This handle describes the
network environment.

block Flag containing options for how long the function waits in the event there are no
outstanding requests.

params Pointer to area allocated by caller to hold parameters written by this function
which describe the Association the requestor would like to establish.

association Caller handle for association that is created by this function.

Description

DUL_ReceiveAssociationRQ is used to allow the caller to receive the next outstanding Association R
on an initialized network (network).  When an Association Request is received, this function fills in pa
the params structure allocated by the caller and returns to the caller.  The function also creates a han
(association) that is used to identify this Association Request.  This handle is to be used to accept or
this Association Request.

block is a variable of type DUL_BLOCKOPTIONS (defined in the DUL include file).  This variable can 
on one of several values to indicate how the function should operate in the event that no Association 
is immediately available.  Legal values are:

DUL_BLOCKBlock indefinitely
DUL_NOBLOCKReturn immediately

When an Association Request is received, DUL_ReceiveAssociationRQ fills in the following fields in
params:

applicationContextName calledAPTitle
callingAPTitle maxPDUsend
callingPresentationAddress requestedPresentationContext

Return Values

DUL_NORMAL DUL_NULLKEY
DUL_ILLEGALKEY DUL_ILLEGALREQUEST
DUL_UNSUPPORTEDNETWORK  DUL_UNKNOWNREMOTENODE
DUL_NETWORKCLOSED DUL_ABORTEDREQUEST
26/30



appli-
 the

result

ble
DUL_RejectAssociationRQ

Name

DUL_RejectAssociationRQ - reject an Association Request made by a requestor.

Synopsis

CONDITION DUL_RejectAssociationRQ( DUL_ASSOCIATIONKEY **association,
DUL_ABORTITEMS  *abortItems)

association Caller’s handle to Association which is to be rejected.  This handle would have
been returned by DUL_ReceiveAssociationRQ.

abortItems Pointer to a structure which gives the reason for rejecting the Association.

Description

DUL_RejectAssociationRQ constructs an A-ASSOCIATE-RJ PDU and transmits it to the requesting 
cation, rejecting the Association.  After the ASSOCIATE RJ PDU is transmitted, the function waits for
network (i.e., socket) to close or until the network timer expires.

The caller defines the nature of the reject by filling in the result and reason fields of abortItems.  The 
field of abortItems should take on one of the following constants:

DUL_REJ_RSLTPERMANENT
DUL_REJ_RSLTTRANSIENT

The reason field of abortItems should take on one of these constants:

DUL_REJ_SU_NOREASON
DUL_REJ_SU_UNSUP_APP_CTX
DUL_REJ_SU_UNRECOG_CALLINGAP
DUL_REJ_SU_UNRECOG_CALLEDAP

These constants are defined in “dulprotocol.h”.  They correspond to definitions which are found in Ta
9.3.4-1 of Part 8 of the Standard.

Return Values

DUL_NORMAL
DUL_NULLKEY
DUL_ILLEGALKEY
DUL_ILLEGALREQUEST
DUL_ILLEGALREJECTREASON
DUL_NETWORKCLOSED
DUL_ILLEGALREJECTRESULT
27/30



.  This

E-RP
elease

on is
DUL_ReleaseAssociation

Name

DUL_ReleaseAssociation - request the orderly release of an Association.

Synopsis

CONDITION DUL_ReleaseAssociation( DUL_ASSOCIATIONKEY **association)

association Caller’s handle to Association to be released.

Description

DUL_ReleaseAssociation is used by an application to perform an orderly shutdown of an Association
function sends a RELEASE-RQ PDU to the connected peer and waits for a reply.  If the reply is a
RELEASE-RP PDU, the Association is released.  If the next PDU is something other than a RELEAS
PDU, the function informs the caller of the event.  The caller may be forced to use other functions to r
the Association.

Notes

This function should only be called by the requestor of an Association.  The acceptor of an Associati
not supposed to request a release.

Return Values

DUL_NORMAL
DUL_NULLKEY
DUL_ILLEGALKEY
DUL_PEERREQUESTEDRELEASE
DUL_NETWORKCLOSED
DUL_ILLEGALREQUEST
28/30



r) and
nsible

scribe
or a
elds of
andle

ult-

onCon-
lt field
y the
DUL_RequestAssociation

Name

DUL_RequestAssociation - request an Association with another node.

Synopsis

CONDITION DUL_RequestAssociation(DUL_NETWORKKEY **network,
DUL_ASSOCIATESERVICEPARAMETERS *params,
DUL_ASSOCIATIONKEY  **association)

network Caller’s handle which describes the network environment.

params Pointer to list of parameters which describe the type of Association requested
by the caller.

association Handle created by this function and returned to the caller which describes this
Association.

Description

DUL_RequestAssociation establishes a network connection with a “listening” application (an accepto
sends an A-ASSOCIATE RQ PDU for the purpose of establishing an Association.  The caller  is respo
for supplying an initialized network environment (network) and a list of parameters (params) which de
the desired Association. The function sends the  A-ASSOCIATE RQ PDU to the acceptor and waits f
response.  If the response is an ACCEPT, the Association is established and the function fills in the fi
params that indicate the type of Association offered by the acceptor.  The function will also create a h
used by the application to reference this Association (association) and will return it to the caller.

If the Association is rejected, the function fills in the reason for the rejection by filling in the result, res
Source and diagnostic fields of params.

Notes

If the Association is accepted, the params structure will contain a list called acknowledgedPresentati
text. This is a list of all of the Presentation Context items received from the peer application.  The resu
in each presentation context item will indicate if the Presentation Context was accepted or rejected b
peer.

Return Values

DUL_NORMAL
DUL_NULLKEY
DUL_ILLEGALKEY
DUL_ILLEGALREQUEST
DUL_ASSOCIATIONREJECTED
DUL_NOCONNECTION
29/30



u-

hed.
satisfy
DUL_WritePDVs

Name

DUL_WritePDVs - write a list of PDVs on an active Association.

Synopsis

CONDITION DUL_WritePDVs( DUL_ASSOCIATIONKEY  **association, DUL_PDVLIST *pdvList)

association Caller’s handle to an active Association.

pdvList Pointer to structure which describes the list of PDVs to be written on the active
Association.

Description

DUL_WritePDVs writes a list of PDVs on an active Association (association).  The caller’s pdvList arg
ments points to the list of PDVs to be written.

Notes

The peer application specifies the maximum length of a list of PDVs when the Association is establis
This function will segment the caller’s list of PDVs and send as many P-DATA PDUs as are needed to 
the maximum length constraint.  Therefore, a call to DUL_WritePDVs may result  in multiple P-DATA
PDUs being transmitted to the peer application.

Return Values

DUL_NORMAL
DUL_NULLKEY
DUL_ILLEGALKEY
DUL_ILLEGALREQUEST
DUL_NETWORKCLOSED
30/30


	Programmer’s Guide to the DUL Facility
	1 Introduction
	1.1 Network Environments
	1.2 Establishing Associations
	1.3 Closing Associations
	1.4 Transmitting Data
	1.5 Presentation Contexts/SOP Classes
	1.6 Implementation Details

	2 Data Structures
	2.1 Network and Association Keys
	2.2 Associate Service Parameters
	2.3 Reject and Abort Parameters
	2.4 Presentation Data Values

	3 Include Files
	4 Return Values
	5 DUL Routines

	DUL_AbortAssociation
	DUL_AcknowledgeAssociationRQ
	DUL_AcknowledgeRelease
	DUL_ClearServiceParameters
	DUL_Debug
	DUL_DefaultServiceParameters
	DUL_DropAssociation
	DUL_DropNetwork
	DUL_DumpParams
	DUL_InitializeNetwork
	DUL_MakePresentationCtx
	DUL_NextPDV
	DUL_ReadPDVs
	DUL_ReceiveAssociationRQ
	DUL_RejectAssociationRQ
	DUL_ReleaseAssociation
	DUL_RequestAssociation
	DUL_WritePDVs

